The Hölder property of singular invariant measures of circle homeomorphisms with single corners
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 355-366 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Any circle homeomorphism with a corner has an invariant measure that is singular w.r.t. the Lebesgue measure. It is proved that the singularity of the invariant measure has the Hölder property.
@article{TMF_1999_121_3_a0,
     author = {A. A. Dzhalilov},
     title = {The {H\"older} property of singular invariant measures of circle homeomorphisms with single corners},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--366},
     year = {1999},
     volume = {121},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a0/}
}
TY  - JOUR
AU  - A. A. Dzhalilov
TI  - The Hölder property of singular invariant measures of circle homeomorphisms with single corners
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 355
EP  - 366
VL  - 121
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a0/
LA  - ru
ID  - TMF_1999_121_3_a0
ER  - 
%0 Journal Article
%A A. A. Dzhalilov
%T The Hölder property of singular invariant measures of circle homeomorphisms with single corners
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 355-366
%V 121
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a0/
%G ru
%F TMF_1999_121_3_a0
A. A. Dzhalilov. The Hölder property of singular invariant measures of circle homeomorphisms with single corners. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 3, pp. 355-366. http://geodesic.mathdoc.fr/item/TMF_1999_121_3_a0/

[1] K. M. Khanin, E. B. Vul, Adv. Sov. Math., 3 (1991), 57 | MR | Zbl

[2] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[3] J. C. Yoccoz, Ann. Sci. Ec. Norm. Sup. Ser. 4, 17 (1984), 333 | MR | Zbl

[4] K. M. Khanin, Ya. G. Sinai, Commun. Math. Phys., 112 (1987), 89 | DOI | MR | Zbl

[5] Ya. G. Sinai, K. M. Khanin, UMN, 44:1 (1989), 57 | MR | Zbl

[6] Y. Katznelson, D. Ornstein, Ergodic Theory and Dyn. Systems, 9:4 (1989), 643 | MR | Zbl

[7] J. Stark, Nonlinearity, 1 (1988), 541 | DOI | MR | Zbl

[8] A. A. Dzhalilov, K. M. Khanin, Funkts. analiz i ego prilozh., 32:3 (1998), 11 | DOI | MR | Zbl

[9] A. Chhabra, R. V. Jensen, Phys. Rev. Lett., 62 (1989), 1327 | DOI | MR

[10] T. S. Halsey, M. N. Jensen, L. P. Kadanoff, I. Procaccia, B. I. Shraiman, Phys. Rev. A, 33 (1986), 1141 | DOI | MR | Zbl

[11] J. Graczyk, G. Swiatek, Commun. Math. Phys., 157:2 (1993), 213 | DOI | MR | Zbl

[12] Ya. G. Sinai, Sovremennye problemy ergodicheskoi teorii, Izd. firma “Fiziko-matematicheskaya literatura”, M., 1995