Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 2, pp. 307-315 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conservation laws that are linear with respect to the number of particles are constructed for classical and quantum Hamiltonians. A class of relaxation models generalizing discrete models of the Boltzmann equation are also considered. Conservation laws are written for these models in the same form as for the Hamiltonians.
@article{TMF_1999_121_2_a7,
     author = {V. V. Vedenyapin and Yu. N. Orlov},
     title = {Conservation laws for polynomial {Hamiltonians} and for discrete models of the {Boltzmann} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {307--315},
     year = {1999},
     volume = {121},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a7/}
}
TY  - JOUR
AU  - V. V. Vedenyapin
AU  - Yu. N. Orlov
TI  - Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 307
EP  - 315
VL  - 121
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a7/
LA  - ru
ID  - TMF_1999_121_2_a7
ER  - 
%0 Journal Article
%A V. V. Vedenyapin
%A Yu. N. Orlov
%T Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 307-315
%V 121
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a7/
%G ru
%F TMF_1999_121_2_a7
V. V. Vedenyapin; Yu. N. Orlov. Conservation laws for polynomial Hamiltonians and for discrete models of the Boltzmann equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 2, pp. 307-315. http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a7/

[1] P. Dirak, Printsipy kvantovoi mekhaniki, Nauka, M., 1979 | MR

[2] O. V. Mingalev, Yu. N. Orlov, V. V. Vedenyapin, Phys. Lett. A, 223 (1996), 246–250 | DOI | MR | Zbl

[3] V. V. Vedenyapin, Yu. N. Orlov, Dokl. RAN, 351:4 (1996), 444–447 | MR | Zbl

[4] V. V. Vedenyapin, O. V. Mingalev, Dokl. RAN, 352:2 (1997), 155–158 | MR | Zbl

[5] V. V. Vedenyapin, O. V. Mingalev, I. V. Mingalev, TMF, 113:3 (1997), 369–383 | DOI | MR | Zbl

[6] A. D. Bryuno, Ogranichennaya zadacha trekh tel, Nauka, M., 1990 | MR | Zbl

[7] Yu. Mozer, Lektsii o gamiltonovykh sistemakh, Mir, M., 1973

[8] Ja Perina, Quantum Statistics of Nonlinear Optics, Reidel, Dordrecht, 1984 | MR

[9] F. A. Berezin, Metod vtorichnogo kvantovaniya, Nauka, M., 1986 | MR | Zbl

[10] S. K. Godunov, U. M. Sultangazin, UMN, 26:3 (1971), 1–51 | MR

[11] V. V. Vedenyapin, UMN, 43:1 (1988), 159–179 | MR | Zbl

[12] R. Streater, Statistical Dynamics, Imperial College Press, London, 1995 | MR | Zbl

[13] G. L. Sewell, Quantum Theory of Collective Phenomena, Clarendon Press, Oxford, 1986 | MR

[14] V. V. Vedenyapin, I. V. Mingalev, O. V. Mingalev, Matem. sb., 184:11 (1993), 21–38 | Zbl

[15] O. V. Mingalev, Dokl. AN SSSR, 323:6 (1992), 1029–1033 | MR | Zbl

[16] I. V. Mingalev, Dokl. AN SSSR, 324:1 (1992), 42–45 | MR | Zbl

[17] A. V. Bobylev, C. Cercignani, J. Stat. Phys., 91:1–2 (1998), 327–341 | DOI | MR | Zbl

[18] A. B. Aranson, “Vychislenie mnogogrannika Nyutona”, Materialy mezhdunarodn. konf. i Chebyshevskikh chtenii, posv. 175-letiyu so dnya rozhdeniya P. L. Chebysheva, T. 1, eds. N. S. Bakhvalov, S. N. Kruzhkov, K. Yu. Bogachev i dr., Izd-vo MGU, M., 1996, 32 | MR