Spectral properties of a pseudorelativistic system of two particles with finite masses
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 2, pp. 297-306
Cet article a éte moissonné depuis la source Math-Net.Ru
The discrete spectrum of the Hamiltonian of a pseudorelativistic system of two particles with finite masses is investigated for a fixed total system momentum $p$ and interaction potentials having the form $Z|r_{12}|^{-\gamma}$ for large $|r_{12}|$, where $Z<0$ and $0<\gamma\leq2$. The leading spectral asymptotic term is derived for $\gamma<2$. For $\gamma=2$, conditions are found for the finiteness and infiniteness of the discrete spectrum that depend (for some $Z$) on the fixed momentum $p$, which radically distinguishes the situation in question from the nonrelativistic case.
@article{TMF_1999_121_2_a6,
author = {S. A. Vugal'ter and G. M. Zhislin},
title = {Spectral properties of a pseudorelativistic system of two particles with finite masses},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {297--306},
year = {1999},
volume = {121},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a6/}
}
TY - JOUR AU - S. A. Vugal'ter AU - G. M. Zhislin TI - Spectral properties of a pseudorelativistic system of two particles with finite masses JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 297 EP - 306 VL - 121 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a6/ LA - ru ID - TMF_1999_121_2_a6 ER -
S. A. Vugal'ter; G. M. Zhislin. Spectral properties of a pseudorelativistic system of two particles with finite masses. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 2, pp. 297-306. http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a6/
[1] R. T. Lewis, H. Siedentop, S. Vugalter, Ann. Inst. H. Poincaré, 97:1 (1997), 1–28
[2] E. Lieb, H. T. Yau, Commun. Math. Phys., 118 (1988), 177–213 | DOI | MR | Zbl
[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR
[4] W. Kirsch, B. Simon, Ann. Phys., 183:1 (1988), 122–130 | DOI | MR | Zbl