Singular operators satisfying an intertwining relation
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 2, pp. 264-270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An intertwining relation between the Beltrami–Laplace operator with an added potential and the Beltrami–Laplace operator is considered on a Riemannian manifold. It is shown that the potential singularities of codimension one form completely geodesic hypersurfaces.
@article{TMF_1999_121_2_a3,
     author = {M. V. Feigin},
     title = {Singular operators satisfying an intertwining relation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {264--270},
     year = {1999},
     volume = {121},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a3/}
}
TY  - JOUR
AU  - M. V. Feigin
TI  - Singular operators satisfying an intertwining relation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 264
EP  - 270
VL  - 121
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a3/
LA  - ru
ID  - TMF_1999_121_2_a3
ER  - 
%0 Journal Article
%A M. V. Feigin
%T Singular operators satisfying an intertwining relation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 264-270
%V 121
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a3/
%G ru
%F TMF_1999_121_2_a3
M. V. Feigin. Singular operators satisfying an intertwining relation. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 2, pp. 264-270. http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a3/

[1] E. L. Ains, Obyknovennye differentsialnye uravneniya, Gos. nauchn.-tekhn. izd-vo Ukrainy, Kharkov, 1939 | MR

[2] Yu. Yu. Berest, A. P. Veselov, UMN, 53:1 (1998), 211–212 | DOI | MR | Zbl

[3] Yu. Berest, A. Veselov, On the Structure of Singularities of Integrable Schrödinger Operators, Letters in Math. Phys., 1998, submitted | MR

[4] O. A. Chalykh, UMN, 53:2 (1998), 167–168 | DOI | MR | Zbl

[5] O. A. Chalykh, M. V. Feigin, A. P. Veselov, Multidimensional Baker–Akhiezer Functions and Huygens' Principle, ; Commun. Math. Phys., 1998, submitted E-print math-ph/9903019 | MR

[6] E. Kartan, Geometriya rimanovykh prostranstv, ONTI, M.–L., 1936

[7] E. M. Opdam, Compos. Math., 67 (1988), 191–209 | MR | Zbl

[8] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94 (1983), 313–404 | DOI | MR

[9] G. J. Heckman, Progr. Math., 101 (1991), 181–191 | MR | Zbl

[10] C. F. Dunkl, Trans. Am. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl