@article{TMF_1999_121_2_a3,
author = {M. V. Feigin},
title = {Singular operators satisfying an intertwining relation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {264--270},
year = {1999},
volume = {121},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a3/}
}
M. V. Feigin. Singular operators satisfying an intertwining relation. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 2, pp. 264-270. http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a3/
[1] E. L. Ains, Obyknovennye differentsialnye uravneniya, Gos. nauchn.-tekhn. izd-vo Ukrainy, Kharkov, 1939 | MR
[2] Yu. Yu. Berest, A. P. Veselov, UMN, 53:1 (1998), 211–212 | DOI | MR | Zbl
[3] Yu. Berest, A. Veselov, On the Structure of Singularities of Integrable Schrödinger Operators, Letters in Math. Phys., 1998, submitted | MR
[4] O. A. Chalykh, UMN, 53:2 (1998), 167–168 | DOI | MR | Zbl
[5] O. A. Chalykh, M. V. Feigin, A. P. Veselov, Multidimensional Baker–Akhiezer Functions and Huygens' Principle, ; Commun. Math. Phys., 1998, submitted E-print math-ph/9903019 | MR
[6] E. Kartan, Geometriya rimanovykh prostranstv, ONTI, M.–L., 1936
[7] E. M. Opdam, Compos. Math., 67 (1988), 191–209 | MR | Zbl
[8] M. A. Olshanetsky, A. M. Perelomov, Phys. Rep., 94 (1983), 313–404 | DOI | MR
[9] G. J. Heckman, Progr. Math., 101 (1991), 181–191 | MR | Zbl
[10] C. F. Dunkl, Trans. Am. Math. Soc., 311 (1989), 167–183 | DOI | MR | Zbl