Huang–Yang–Luttinger model: Gaussian dominance and Bose condensation
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 2, pp. 347-352
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove the Gaussian dominance condition for the Huang–Yang–Luttinger model in the case with an arbitrary chemical potential. Using this condition in the framework of the method of correlation inequalities, we obtain two-sided bounds on the corresponding two-point thermodynamic means. Based on these bounds, we prove the existence of Bose condensation in this model.
@article{TMF_1999_121_2_a10,
author = {M. Corgini},
title = {Huang{\textendash}Yang{\textendash}Luttinger model: {Gaussian} dominance and {Bose} condensation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {347--352},
year = {1999},
volume = {121},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a10/}
}
M. Corgini. Huang–Yang–Luttinger model: Gaussian dominance and Bose condensation. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 2, pp. 347-352. http://geodesic.mathdoc.fr/item/TMF_1999_121_2_a10/
[1] K. Huang, C. N. Yang, J. M. Luttinger, Phys. Rev., 105 (1957), 776 | DOI | MR | Zbl
[2] M. van den Berg, J. T. Lewis, Helv. Phys. Acta, 59 (1986), 1271 | MR
[3] M. van den Berg, J. T. Lewis, J. V. Pulé, Commun. Math. Phys., 118 (1988), 61 | DOI | MR | Zbl
[4] M. van den Berg, J. T. Lewis, P. de Smedt, J. Stat. Phys., 37 (1984), 697 | DOI | MR
[5] M. Corgini, D. P. Sankovich, Int. J. Mod. Phys. B, 11:28 (1997), 3329 | DOI