PCT, spin and statistics, and analytic wave front set
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 1, pp. 139-164 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new, more general derivation of the spin-statistics and PCT theorems is presented. It uses the notion of the analytic wave front set of (ultra)distributions and, in contrast to the usual approach, covers nonlocal quantum fields. The fields are defined on the functional domain of test functions with compact supports in the momentum space. The vacuum expectation values are thereby admitted to be arbitrarily singular in their space–time dependence. The local commutativity condition is replaced by an asymptotic commutativity condition, which develops generalizations of the microcausality axiom previously proposed.
@article{TMF_1999_121_1_a8,
     author = {M. A. Soloviev},
     title = {PCT, spin and statistics, and analytic wave front set},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {139--164},
     year = {1999},
     volume = {121},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a8/}
}
TY  - JOUR
AU  - M. A. Soloviev
TI  - PCT, spin and statistics, and analytic wave front set
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 139
EP  - 164
VL  - 121
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a8/
LA  - ru
ID  - TMF_1999_121_1_a8
ER  - 
%0 Journal Article
%A M. A. Soloviev
%T PCT, spin and statistics, and analytic wave front set
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 139-164
%V 121
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a8/
%G ru
%F TMF_1999_121_1_a8
M. A. Soloviev. PCT, spin and statistics, and analytic wave front set. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 1, pp. 139-164. http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a8/

[1] V. Ya. Fainberg, M. A. Soloviev, TMF, 93 (1992), 514 | MR | Zbl

[2] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[3] R. Iost, Obschaya teoriya kvantovannykh polei, Mir, M., 1967 | MR

[4] R. Striter, A. Vaitman, RST, spin i statistika i vse takoe, Nauka, M., 1966

[5] W. Lücke, Commun. Math. Phys., 65 (1979), 77 | DOI | MR | Zbl

[6] W. Lücke, Acta Phys. Austriaca, 55 (1984), 213 | MR

[7] W. Lücke, J. Math. Phys., 27 (1986), 1901 | DOI | MR

[8] M. A. Soloviev, J. Math. Phys., 39 (1998), 2635 | DOI | MR | Zbl

[9] M. A. Solovev, Pisma v ZhETF, 67 (1998), 586

[10] M. A. Soloviev, Lett. Math. Phys., 33 (1995), 49 | DOI | MR | Zbl

[11] M. A. Solovev, TMF, 105 (1995), 405 | Zbl

[12] M. A. Soloviev, Commun. Math. Phys., 184 (1997), 579 | DOI | MR | Zbl

[13] M. A. Soloviev, Carrier cones of the Fourier transforms of ultradistributions, Preprint FIAN/TD/8-99, FIAN, M., 1999

[14] V. Ya. Fainberg, “O kvantovykh teoriyakh s nepolinomialnym rostom matrichnykh elementov”, Problemy teoreticheskoi fiziki, eds. V. I. Ritus, E. L. Feinberg i dr., Nauka, M., 1972, 119 | MR

[15] G. V. Efimov, Nelokalnye vzaimodeistviya kvantovannykh polei, Nauka, M., 1977 | MR

[16] G. V. Efimov, Problemy kvantovoi teorii nelokalnykh vzaimodeistvii, Nauka, M., 1985 | MR

[17] M. A. Solovev, Trudy FIAN, 209, 1993, 121

[18] J. Bümmerstede, W. Lücke, Commun. Math. Phys., 37 (1974), 121 | DOI | MR

[19] V. Ya. Fainberg, A. V. Marshakov, Phys. Lett. B, 211 (1988), 82 | DOI | MR

[20] A. S. Wightman, Adv. Math. Suppl. Stud., 7B (1981), 769 | MR | Zbl

[21] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii, T. 2, Fizmatgiz, M., 1958 | MR | Zbl

[22] P. Shapira, Teoriya giperfunktsii, Mir, M., 1972 | MR | Zbl

[23] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, T. 1, Mir, M., 1986 | MR

[24] H. Komatsu, J. Fac. Sci. Univ. Tokyo, Sect. 1A, Math., 20 (1973), 25 | MR | Zbl

[25] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[26] M. A. Solovev, TMF, 15 (1973), 3 | Zbl

[27] H. J. Borchers, K. Pohlmeyer, Commun. Math. Phys., 8 (1968), 269 | DOI | MR | Zbl

[28] V. Pauli, “Printsip zapreta, gruppa Lorentsa, otrazhenie prostranstva, vremeni i zaryada”, Nils Bor i razvitie fiziki, eds. V. Pauli pri uchastii L. Rozenfelda i V. Vaiskopfa, IL, M., 1958, 46

[29] U. Moschella, F. Strocchi, Lett. Math. Phys., 24 (1992), 103 | DOI | MR | Zbl

[30] M. A. Soloviev, Lett. Math. Phys., 41 (1997), 265 | DOI | MR | Zbl