Integral equations for correlation functions of a quantum one-dimensional Bose gas
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 1, pp. 117-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The large-time, long-distance behavior of the temperature correlation functions of a quantum one-dimensional Bose gas is considered. We obtain integral equations, which are closely related to the thermodynamic Bethe ansatz equations and whose solutions describe asymptotic expressions. In the low-temperature limit, the solutions of these equations are expressed through observables of the model.
@article{TMF_1999_121_1_a7,
     author = {N. A. Slavnov},
     title = {Integral equations for correlation functions of a quantum one-dimensional {Bose} gas},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {117--138},
     year = {1999},
     volume = {121},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a7/}
}
TY  - JOUR
AU  - N. A. Slavnov
TI  - Integral equations for correlation functions of a quantum one-dimensional Bose gas
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 117
EP  - 138
VL  - 121
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a7/
LA  - ru
ID  - TMF_1999_121_1_a7
ER  - 
%0 Journal Article
%A N. A. Slavnov
%T Integral equations for correlation functions of a quantum one-dimensional Bose gas
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 117-138
%V 121
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a7/
%G ru
%F TMF_1999_121_1_a7
N. A. Slavnov. Integral equations for correlation functions of a quantum one-dimensional Bose gas. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 1, pp. 117-138. http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a7/

[1] T. Kojima, V. E. Korepin, N. A. Slavnov, Commun. Math. Phys., 188 (1997), 657 | DOI | MR | Zbl

[2] T. Kojima, V. E. Korepin, N. A. Slavnov, Commun. Math. Phys., 189 (1997), 709 | DOI | MR | Zbl

[3] V. E. Korepin, N. A. Slavnov, J. Phys. A, 30 (1997), 8241 | DOI | MR | Zbl

[4] N. A. Slavnov, Zap. nauchn. sem. POMI, 251, 1998, 80

[5] A. R. Its, N. A. Slavnov, TMF, 119:2 (1999), 179 ; E-print math-ph/9811009 | DOI | MR | Zbl

[6] C. N. Yang, C. P. Yang, J. Math. Phys., 10 (1969), 1115 | DOI | MR | Zbl

[7] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241 (1984), 333 | DOI | MR | Zbl

[8] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[9] P. Deift, X. Zhou, Ann. of Math., 137 (1995), 295 | DOI | MR

[10] V. E. Korepin, Commun. Math. Phys., 113 (1987), 177 | DOI | MR | Zbl

[11] V. E. Korepin, N. A. Slavnov, J. Phys. A, 30 (1997), 8623 | DOI | MR | Zbl

[12] A. R. Its, A. G. Izergin, V. E. Korepin, G. G. Varzugin, Physica D, 54 (1992), 351 | DOI | MR | Zbl

[13] E. H. Lieb, W. Liniger, Phys. Rev., 130 (1963), 1605 | DOI | MR | Zbl

[14] V. E. Korepin, N. A. Slavnov, European J. Phys., 5 (1998), 555 ; The new identity for the scattering matrix of exactly solvable models, E-print solv-int/9712005 | DOI | MR

[15] N. A. Slavnov, TMF, 116:3 (1998), 362 | DOI | MR | Zbl