Functional self-similarity and renormalization group symmetry in mathematical physics
Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 1, pp. 66-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results from developing and applying the notions of functional self-similarity and the Bogoliubov renormalization group to boundary-value problems in mathematical physics during the last decade are reviewed. The main achievement is the regular algorithm for finding renormalization group–type symmetries using the contemporary theory of Lie groups of transformations.
@article{TMF_1999_121_1_a4,
     author = {V. F. Kovalev and D. V. Shirkov},
     title = {Functional self-similarity and renormalization group symmetry in mathematical physics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {66--88},
     year = {1999},
     volume = {121},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a4/}
}
TY  - JOUR
AU  - V. F. Kovalev
AU  - D. V. Shirkov
TI  - Functional self-similarity and renormalization group symmetry in mathematical physics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 66
EP  - 88
VL  - 121
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a4/
LA  - ru
ID  - TMF_1999_121_1_a4
ER  - 
%0 Journal Article
%A V. F. Kovalev
%A D. V. Shirkov
%T Functional self-similarity and renormalization group symmetry in mathematical physics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 66-88
%V 121
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a4/
%G ru
%F TMF_1999_121_1_a4
V. F. Kovalev; D. V. Shirkov. Functional self-similarity and renormalization group symmetry in mathematical physics. Teoretičeskaâ i matematičeskaâ fizika, Tome 121 (1999) no. 1, pp. 66-88. http://geodesic.mathdoc.fr/item/TMF_1999_121_1_a4/

[1] D. V. Shirkov, DAN SSSR, 263 (1982), 64 | MR

[2] D. V. Shirkov, TMF, 60 (1984), 218 | MR

[3] D. V. Shirkov, Intern. J. Mod. Phys. A, 3 (1988), 1321 | DOI

[4] E. C. G. Stückelberg, A. Petermann, Helv. Phys. Acta, 26 (1953), 499 | MR

[5] N. N. Bogolyubov, D. V. Shirkov, DAN SSSR, 103 (1955), 203 ; 391; ЖЭТФ, 30 (1956), 77 ; N. N. Bogoliubov, D. V. Shirkov, Nuovo Cimento, 3 (1956), 845 | MR | Zbl | MR | DOI | MR | Zbl

[6] K. Wilson, Phys. Rev. B, 4 (1971), 3184 | DOI | Zbl

[7] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, 3-e izd., Nauka, M., 1976 ; 4-е изд., 1984 | MR

[8] V. Z. Blank, V. L. Bonch-Bruevich, D. V. Shirkov, ZhETF, 33 (1957), 265 | Zbl

[9] V. F. Kovalev, V. V. Pustovalov, D. V. Shirkov, J. Math. Phys., 39:2 (1998), 1170 | DOI | MR | Zbl

[10] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[11] L.-Y. Chen, N. Goldenfeld, Y. Oono, Phys. Rev. E, 54:1 (1996), 376 | DOI

[12] J. Bricmont, A. Kupiainen, G. Lin, Commun. Pure Appl. Math., 47 (1994), 893 | DOI | MR | Zbl

[13] T. Kunihiro, Progr. Theor. Phys., 94:4 (1995), 503 | DOI | MR

[14] V. F. Kovalev, S. V. Krivenko, V. V. Pustovalov, “The renormalization group method bazed on group analysis”, Renormalization group-91, eds. D. V. Shirkov, V. B. Priezhzev, World Scientific, Singapore, 1992, 300 | MR

[15] V. F. Kovalev, V. V. Pustovalov, D. V. Shirkov, Soobscheniya OIYaI, 1995, no. P5-95-447

[16] R. M. Corless et al., Adv. Comp. Math., 5 (1996), 329 | DOI | MR | Zbl

[17] I. L. Solovtsov, D. V. Shirkov, TMF, 120:3 (1999), 482 | DOI | MR | Zbl

[18] N. H. Ibragimov (ed.), CRC Handbook of Lie Group Analysis of Differential Equations. V. 1. Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, Florida, USA, 1994 ; V. 2. Applications in Engineering and Physical Sciences, 1995; V. 3. New trends in theoretical developments and computational methods, 1996 | MR

[19] V. F. Kovalev, V. V. Pustovalov, Lie Group and their Applications (Istanbul), 1:2 (1994), 104 | MR | Zbl

[20] V. F. Kovalev, V. V. Pustovalov, Math. Comput. Modelling, 25 (1997), 165 | DOI | MR | Zbl

[21] V. F. Kovalev, J. Nonlinear Math. Phys., 3 (1996), 351 | DOI | MR | Zbl

[22] V. F. Kovalev, D. V. Shirkov, J. Nonlinear Opt. Phys. Materials, 6 (1997), 443 | DOI | MR

[23] V. F. Kovalev, V. V. Pustovalov, TMF, 81 (1989), 69

[24] V. F. Kovalev, V. V. Pustovalov, Kratkie soobscheniya po fizike FIAN SSSR im. P. N. Lebedeva, 1989, no. 3, 41 | MR

[25] V. F. Kovalev, V. V. Pustovalov, Kvantovaya elektronika, 15 (1988), 726 ; Физика плазмы, 15 (1989), 47 ; 563; Квантовая электроника, 16 (1989), 2261 | MR

[26] V. F. Kovalev, TMF, 111 (1997), 369 | DOI | MR | Zbl

[27] V. F. Kovalev, TMF, 119:3 (1999), 405 | DOI | MR | Zbl

[28] V. F. Kovalev, V. V. Pustovalov, S. I. Senashov, Diff. uravn., 29:10 (1993), 1751 | MR | Zbl

[29] S. Lie, Gesammelte Abhandlungen, B. G. Teubner, Leipzig ; Bd. 1, H. Aschehoug Co., Oslo, 1934; Bd. 2. Teil 1, 1935; Bd. 2. Teil 2, 1937; Bd. 3, 1922; Bd. 4, 1929; Bd. 5, 1924; Bd. 6, 1927 | MR

[30] Peter J. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, N. Y., 1986 | MR

[31] Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, eds. A. M. Vinogradov, I. S. Krasilschik, Faktorial, M., 1997

[32] V. F. Kovalev, S. V. Krivenko, V. V. Pustovalov, Diff. uravn., 29 (1993), 1804 ; 1971 | MR | Zbl

[33] C. Stephens, Int. J. Mod. Phys., 12 (1998), 1379 ; Mod. Phys. Lett. A, 9 (1994), 309 | DOI | DOI