The analytic approach in quantum chromodynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 3, pp. 482-510 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a new “renormalization invariant analytic formulation” of calculations in quantum chromodynamics, the renormalization group summation is correlated with the analyticity with respect to the square of the transferred momentum $Q^2$. The expressions for the invariant charge and matrix elements are then modified such that the nonphysical singularities of the ghost pole type do not appear at all: additional nonperturbative contributions compensate them by construction. With the new scheme, the calculation results for several physical processes are stable with respect to higher-loop effects and the choice of the renormalization prescription. Having applications of the new formulation to inelastic lepton–nucleon scattering processes in mind, we analyze the corresponding structure functions starting from general principles of the theory in the Jost–Lehmann–Dyson integral representation. A nonstandard scaling variable leads to modified moments of the structure functions possessing Källén–Lehmann analytic properties with respect to $Q^2$. We find the relation between these “modified analytic moments” and the operator product expansion.
@article{TMF_1999_120_3_a9,
     author = {I. L. Solovtsov and D. V. Shirkov},
     title = {The analytic approach in quantum chromodynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {482--510},
     year = {1999},
     volume = {120},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a9/}
}
TY  - JOUR
AU  - I. L. Solovtsov
AU  - D. V. Shirkov
TI  - The analytic approach in quantum chromodynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 482
EP  - 510
VL  - 120
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a9/
LA  - ru
ID  - TMF_1999_120_3_a9
ER  - 
%0 Journal Article
%A I. L. Solovtsov
%A D. V. Shirkov
%T The analytic approach in quantum chromodynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 482-510
%V 120
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a9/
%G ru
%F TMF_1999_120_3_a9
I. L. Solovtsov; D. V. Shirkov. The analytic approach in quantum chromodynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 3, pp. 482-510. http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a9/

[1] N. N. Bogolyubov, D. V. Shirkov, DAN SSSR, 103 (1955), 203 ; 391 | MR | Zbl

[2] N. N. Bogolyubov, D. V. Shirkov, ZhETF, 30 (1956), 77 | MR

[3] N. N. Bogolyubov, A. A. Logunov, D. V. Shirkov, ZhETF, 37 (1959), 805 | Zbl

[4] N. N. Bogolyubov, V. S. Vladimirov, A. N. Tavkhelidze, TMF, 12 (1972), 3 ; 305

[5] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, gl. “Dispersionnye sootnosheniya”, 1973 ; 1976; Наука, М., 1986 | MR | Zbl

[6] D. V. Shirkov, I. L. Solovtsov, Kratkie soobscheniya OIYaI, 1996, no. 2[76]-96, 5; E-print hep-ph/9604363

[7] D. V. Shirkov, I. L. Solovtsov, Phys. Rev. Lett., 79 (1997), 1209 | DOI

[8] I. L. Solovtsov, D. V. Shirkov, Phys. Lett. B, 442 (1998), 344 | DOI

[9] K. A. Milton, I. L. Solovtsov, O. P. Solovtsova, Phys. Lett. B, 415 (1997), 104 | DOI

[10] O. P. Solovtsova, Pisma v ZhETF, 64 (1996), 664

[11] K. A. Milton, I. L. Solovtsov, O. P. Solovtsova, Analytic Perturbative Approach to QCD, Talk given at the XXIX Int. Conference on HEP (July 23-29, 1998, Vancouver, B.C., Canada); Proceed. (to appear); preprint OKHEP-98-06, Oklahoma Univ., 1998; E-print hep-ph/9808457

[12] D. V. Shirkov, TMF, 119 (1999), 55 ; Renormalization group, causality, and nonpower perturbation expansion in QFT, Preprint E2-98-311, JINR, Dubna, 1998; E-print hep-th/9810246 | DOI | MR | Zbl

[13] K. A. Milton, I. L. Solovtsov, O. P. Solovtsova, Phys. Lett. B, 439 (1998), 421 | DOI

[14] K. A. Milton, I. L. Solovtsov, O. P. Solovtsova, The Gross–Llewellyn Smith sum rule in the analytic approach to perturbative QCD, Preprint OKHEP-98-07, Oklahoma Univ., 1998

[15] K. A. Milton, I. L. Solovtsov, Phys. Rev. D, 55 (1997), 5295 | DOI | MR

[16] K. A. Milton, O. P. Solovtsova, Phys. Rev. D, 57 (1998), 5402 | DOI | MR

[17] I. F. Ginzburg, D. V. Shirkov, ZhETF, 49 (1965), 335

[18] D. V. Shirkov, Nucl. Phys. B, 332 (1990), 425 | DOI | MR

[19] D. V. Shirkov, Lett. Math. Phys., 1 (1976), 179 | DOI | MR

[20] B. A. Magradze, The gluon propagator in analytic perturbation theory, Talk given at 10th Intern. Seminar on High-Energy Physics (Quarks 98) (18–24 May 1998, Suzdal, Russia); Preprint G-TMI-98-08-01, Tbilisi, 1998; E-print hep-ph/9808247

[21] E. Gardi, G. Grunberg, M. Karliner, Can the QCD running coupling have a causal analyticity structure?, Preprint TAUP-2503-98, Paris, 1998; E-print hep-ph/9806462

[22] A. C. Mattingly, P. M. Stevenson, Phys. Rev. D, 49 (1994), 437 | DOI | MR

[23] Yu. L. Dokshitzer, V. A. Khoze, S. I. Troyan, Phys. Rev. D, 53 (1996), 89 | DOI

[24] E. C. Poggio, H. R. Quinn, S. Weinberg, Phys. Rev. D, 13 (1976), 1958 | DOI

[25] P. M. Stevenson, Phys. Rev. D, 23 (1981), 2916 | DOI | MR

[26] S. G. Gorishny, A. L. Kataev, S. A. Larin, Phys. Lett. B, 259 (1991), 144 | DOI

[27] F. Jegerlehner, Nucl. Phys. C (Proc. Suppl.), 51 (1996), 131 ; Hadronic vacuum polarization contribution to $g-2$ of the leptons and $\alpha(M_z)$, E-print hep-ph/9606484 | DOI

[28] S. Eidelman, F. Jegerlehner, A. L. Kataev, O. Veretin, Testing nonperturbative strong interaction effects via the Adler function, Preprint DESY 98-206, Hamburg, 1998; E-print hep-ph/9812521

[29] J. Chyla, A. L. Kataev, S. A. Larin, Phys. Lett. B, 261 (1991), 269 | DOI | MR

[30] P. A. Ra̧czka, A. Szymacha, Phys. Rev. D, 54 (1996), 3073 | DOI

[31] W. Celmaster, R. J. Gonsalves, Phys. Rev. D, 20 (1979), 1420 | DOI

[32] P. A. Ra̧czka, Z. Phys. C, 65 (1995), 481 | DOI | MR

[33] “Review of Particle Physics”, The European Phys. J. C, 3 (1998)

[34] E. Braaten, Phys. Rev. Lett., 60 (1988), 1606 ; Phys. Rev. D, 39 (1989), 1458 | DOI | DOI

[35] E. Braaten, S. Narison, A. Pich, Nucl. Phys. B, 373 (1992), 581 | DOI

[36] K. A. Milton, I. L. Solovtsov, V. I. Yasnov, Analytic perturbation theory and renormalization scheme dependence in $\tau$-decay, Preprint OKHEP-98-01, Oklahoma Univ., 1998; E-print hep-ph/9802262

[37] T. Coan et al. {(}CLEO Collaboration{\rm)}, Phys. Lett. B, 356 (1996), 580 | DOI

[38] R. Jost, H. Lehmann, Nuovo Cimento, 5 (1957), 1598 | DOI | MR | Zbl

[39] F. J. Dyson, Phys. Rev., 110 (1958), 1460 | DOI | MR | Zbl

[40] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987 | MR

[41] V. S. Vladimirov, Yu. N. Drozhzhinov, B. I. Zavyalov, Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[42] O. Nachtmann, Nucl. Phys. B, 63 (1973), 237 | DOI

[43] B. Geyer, D. Robaschik, E. Wieczorek, Fortschr. Phys., 27 (1979), 75 ; Б. Гайер, Д. Робашик, Э. Вицорек, ЭЧАЯ, 11 (1980), 132 | DOI | MR | MR

[44] W. Wetzel, Nucl. Phys. B, 139 (1978), 170 | DOI

[45] S. Deser, W. Gilbert, E. C. S. Sudarshan, Phys. Rev., 117 (1960), 266 | DOI | MR

[46] D. I. Kazakov, O. V. Tarasov, D. V. Shirkov, TMF, 38 (1979), 15 ; D. I. Kazakov, D. V. Shirkov, Fortschr. Phys., 28 (1980), 465 | MR | DOI | MR