Nonlocal hydrodynamic equations and BBGKY hierarchy reduction for hard spheres
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 3, pp. 394-399 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss the derivation of the kinetic equation for a classical system of hard spheres based on an infinite sequence of equations for distribution functions in the BBGKY hierarchy case. It is well known that the assumption of full synchronization of all distributions leads to certain problems in describing the “tails” of the autocorrelation functions and some other correlation effects with medium or high density. We show how to avoid these difficulties by maintaining the explicit form of time-dependent dynamic correlations in the BBGKY closure scheme.
@article{TMF_1999_120_3_a3,
     author = {N. G. Inozemtseva and B. I. Sadovnikov},
     title = {Nonlocal hydrodynamic equations and {BBGKY} hierarchy reduction for hard spheres},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {394--399},
     year = {1999},
     volume = {120},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a3/}
}
TY  - JOUR
AU  - N. G. Inozemtseva
AU  - B. I. Sadovnikov
TI  - Nonlocal hydrodynamic equations and BBGKY hierarchy reduction for hard spheres
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 394
EP  - 399
VL  - 120
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a3/
LA  - ru
ID  - TMF_1999_120_3_a3
ER  - 
%0 Journal Article
%A N. G. Inozemtseva
%A B. I. Sadovnikov
%T Nonlocal hydrodynamic equations and BBGKY hierarchy reduction for hard spheres
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 394-399
%V 120
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a3/
%G ru
%F TMF_1999_120_3_a3
N. G. Inozemtseva; B. I. Sadovnikov. Nonlocal hydrodynamic equations and BBGKY hierarchy reduction for hard spheres. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 3, pp. 394-399. http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a3/

[1] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M., 1946 | MR

[2] M. H. Ernst et al., Physica, 45 (1969), 127 | DOI | MR

[3] S. Cho, Dzh. Ulenbek, “Kineticheskaya teoriya yavlenii v plotnykh gazakh”, Dop-e v kn.: Dzh. Ulenbek, Dzh. Ford, Lektsii po statisticheskoi mekhanike, Mir, M., 1965, 189–280

[4] J. R. Dorfman, E. G. D. Cohen, Phys. Lett., 16 (1965), 124 ; J. Math. Phys., 8 (1967), 282 | DOI | DOI

[5] B. J. Alder, T. E. Wainwright, Phys. Rev. Lett., 18 (1967), 988 | DOI

[6] N. N. Bogolyubov, Kineticheskie uravneniya i funktsii Grina v statisticheskoi mekhanike. Mezhdunarodnyi simpozium po izbrannym problemam v statisticheskoi mekhanike, JINR D17-11490, OIYaI, Dubna, 1978, s. 7

[7] N. G. Inozemtseva, B. I. Sadovnikov, Obobschennaya gidrodinamika i protsessy perenosa. III Mezhdunarodnyi simpozium po izbrannym problemam v statisticheskoi mekhanike. T. 1, JINR D17-84-850, OIYaI, Dubna, 1985, s. 310

[8] N. G. Inozemtseva, B. I. Sadovnikov, TMF, 51 (1982), 142 | MR