A quantum Teichmüller space
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 3, pp. 511-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We explicitly describe a noncommutative deformation of the $*$-algebra of functions on the Teichmüller space of Riemann surfaces with holes that is equivariant with respect to the action of the mapping class group.
@article{TMF_1999_120_3_a10,
     author = {V. V. Fock and L. O. Chekhov},
     title = {A quantum {Teichm\"uller} space},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {511--528},
     year = {1999},
     volume = {120},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a10/}
}
TY  - JOUR
AU  - V. V. Fock
AU  - L. O. Chekhov
TI  - A quantum Teichmüller space
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 511
EP  - 528
VL  - 120
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a10/
LA  - ru
ID  - TMF_1999_120_3_a10
ER  - 
%0 Journal Article
%A V. V. Fock
%A L. O. Chekhov
%T A quantum Teichmüller space
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 511-528
%V 120
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a10/
%G ru
%F TMF_1999_120_3_a10
V. V. Fock; L. O. Chekhov. A quantum Teichmüller space. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 3, pp. 511-528. http://geodesic.mathdoc.fr/item/TMF_1999_120_3_a10/

[1] H. Verlinde, E. Verlinde, “Conformal field theory and geometric quantization”, Superstrings 1989 (Trieste, 1989), eds. M. Green et al., World Sci. Publishing, River Edge, NJ, 1990, 422–449 | MR | Zbl

[2] E. Witten, “The central charge in three dimensions”, Physics and Mathematics of Strings, eds. L. Brink, D. Friedan, and A. M. Polyakov, World Sci. Publishing, Teaneck, NJ, 1990, 530–559 | DOI | MR

[3] S. Carlip, Quantum gravity in $2+1$ dimensions, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl

[4] L. D. Faddeev, R. M. Kashaev, Mod. Phys. Lett. A, 9:5 (1994), 427–434 ; E-print hep-th/9310070 | DOI | MR | Zbl

[5] R. M. Kashaev, Lett. Math. Phys., 43:2 (1998), 105–115 ; E-print q-alg/9706018 | DOI | MR | Zbl

[6] O. Ya. Viro, “Lectures on combinatorial presentations of manifolds”, Differential geometry and topology (Alghero, 1992), eds. R. Cadleo and F. Tricerri, World Sci. Publishing, River Edge, NJ, 1993, 244–264 | MR | Zbl

[7] K. Strebel, Quadratic Differentials, Springer, Berlin–Heidelberg–New York, 1984 | MR

[8] R. C. Penner, Commun. Math. Phys., 113 (1988), 299–339 | DOI | MR

[9] V. V. Fock, Dual Teichmüller spaces, Preprint MPIM-97, MPIM, Bonn, 1997 ; E-print hep-th/9702018 | MR

[10] W. M. Goldman, Adv. Math., 54 (1984), 200–225 | DOI | MR | Zbl

[11] G. Lion, M. Vergne, The Weil representation, Maslov index and theta series, Progress in Mathematics, 6, Birkhäuser, Boston, Mass., 1980 | DOI | MR | Zbl