Schrödinger operator with a perturbed small steplike potential
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 277-290 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Schrödinger operator with a potential that is periodic with respect to two variables and has the shape of a small step perturbed by a function decreasing with respect to a third variable. We show that under certain conditions on the magnitudes of the step and the perturbation, a unique level that can be an eigenvalue or a resonance exists near the essential spectrum. We find the asymptotic value of this level.
@article{TMF_1999_120_2_a7,
     author = {Yu. P. Chuburin},
     title = {Schr\"odinger operator with a perturbed small steplike potential},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {277--290},
     year = {1999},
     volume = {120},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a7/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - Schrödinger operator with a perturbed small steplike potential
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 277
EP  - 290
VL  - 120
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a7/
LA  - ru
ID  - TMF_1999_120_2_a7
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T Schrödinger operator with a perturbed small steplike potential
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 277-290
%V 120
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a7/
%G ru
%F TMF_1999_120_2_a7
Yu. P. Chuburin. Schrödinger operator with a perturbed small steplike potential. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 277-290. http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a7/

[1] Yu. P. Chuburin, TMF, 77:3 (1988), 472 | MR

[2] E. B. Davies, Proc. Cambridge Philos. Soc., 82 (1977), 327 | DOI | MR | Zbl

[3] E. B. Davies, B. Simon, Commun. Math. Phys., 63 (1978), 277 | DOI | MR | Zbl

[4] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[5] Yu. P. Chuburin, Matem. zametki, 52:2 (1992), 138 | MR

[6] Yu. P. Chuburin, O rasseyanii na kristallicheskoi plenke (spektr i asimptotika volnovykh funktsii uravneniya Shredingera), Preprint, Fiziko-tekhnicheskii institut UNTs AN SSSR, Sverdlovsk, 1985

[7] Yu. P. Chuburin, TMF, 72:1 (1987), 120 | MR

[8] Kh. Tsikon, R. Freze, V. Kirsh, B. Saimon, Operatory Shredingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990 | MR

[9] Yu. P. Chuburin, TMF, 110:3 (1997), 443 | DOI | MR | Zbl

[10] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 3. Teoriya rasseyaniya, Mir, M., 1982 | MR