Local variational differential operators in field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 256-276

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a new calculus for local variational differential operators where the action of higher-order operators on local functionals does not lead to indefinite quantities like $\delta(0)$. We apply this formalism to the Batalin–Vilkovisky formulation of local general gauge field theory and to its $Sp(2)$-symmetrical generalization. Its relation to a semiclassical expansion is also discussed.
@article{TMF_1999_120_2_a6,
     author = {B. L. Voronov and I. V. Tyutin and Sh. S. Shakhverdiev},
     title = {Local variational differential operators in field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {256--276},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a6/}
}
TY  - JOUR
AU  - B. L. Voronov
AU  - I. V. Tyutin
AU  - Sh. S. Shakhverdiev
TI  - Local variational differential operators in field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 256
EP  - 276
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a6/
LA  - ru
ID  - TMF_1999_120_2_a6
ER  - 
%0 Journal Article
%A B. L. Voronov
%A I. V. Tyutin
%A Sh. S. Shakhverdiev
%T Local variational differential operators in field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 256-276
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a6/
%G ru
%F TMF_1999_120_2_a6
B. L. Voronov; I. V. Tyutin; Sh. S. Shakhverdiev. Local variational differential operators in field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 256-276. http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a6/