Local variational differential operators in field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 256-276
Voir la notice de l'article provenant de la source Math-Net.Ru
We develop a new calculus for local variational differential operators where the action of higher-order operators on local functionals does not lead to indefinite quantities like $\delta(0)$. We apply this formalism to the Batalin–Vilkovisky formulation of local general gauge field theory and to its $Sp(2)$-symmetrical generalization. Its relation to a semiclassical expansion is also discussed.
@article{TMF_1999_120_2_a6,
author = {B. L. Voronov and I. V. Tyutin and Sh. S. Shakhverdiev},
title = {Local variational differential operators in field theory},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {256--276},
publisher = {mathdoc},
volume = {120},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a6/}
}
TY - JOUR AU - B. L. Voronov AU - I. V. Tyutin AU - Sh. S. Shakhverdiev TI - Local variational differential operators in field theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 256 EP - 276 VL - 120 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a6/ LA - ru ID - TMF_1999_120_2_a6 ER -
B. L. Voronov; I. V. Tyutin; Sh. S. Shakhverdiev. Local variational differential operators in field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 256-276. http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a6/