Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 248-255
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the integrable systems of the Heisenberg equation type that correspond to different decompositions of $\mathbb Z$-graded Lie algebras into a direct sum of two subalgebras. We discover new non-Abelian generalizations of some known integrable models.
@article{TMF_1999_120_2_a5,
author = {I. Z. Golubchik and V. V. Sokolov},
title = {Generalized {Heisenberg} equations on $\mathbb Z$-graded {Lie} algebras},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {248--255},
publisher = {mathdoc},
volume = {120},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a5/}
}
TY - JOUR AU - I. Z. Golubchik AU - V. V. Sokolov TI - Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 248 EP - 255 VL - 120 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a5/ LA - ru ID - TMF_1999_120_2_a5 ER -
I. Z. Golubchik; V. V. Sokolov. Generalized Heisenberg equations on $\mathbb Z$-graded Lie algebras. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 248-255. http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a5/