Laplace invariants of hyperbolic equations linearizable by a differential substitution
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 237-247
Voir la notice de l'article provenant de la source Math-Net.Ru
The boundness of the order of generalized Laplace invariants of a scalar hyperbolic equation is a necessary condition for the existence of a differential substitution transforming solutions of the equation into those of a linear hyperbolic equation.
@article{TMF_1999_120_2_a4,
author = {S. Ya. Startsev},
title = {Laplace invariants of hyperbolic equations linearizable by a differential substitution},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {237--247},
publisher = {mathdoc},
volume = {120},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/}
}
TY - JOUR AU - S. Ya. Startsev TI - Laplace invariants of hyperbolic equations linearizable by a differential substitution JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 237 EP - 247 VL - 120 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/ LA - ru ID - TMF_1999_120_2_a4 ER -
S. Ya. Startsev. Laplace invariants of hyperbolic equations linearizable by a differential substitution. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 237-247. http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/