Laplace invariants of hyperbolic equations linearizable by a differential substitution
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 237-247

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundness of the order of generalized Laplace invariants of a scalar hyperbolic equation is a necessary condition for the existence of a differential substitution transforming solutions of the equation into those of a linear hyperbolic equation.
@article{TMF_1999_120_2_a4,
     author = {S. Ya. Startsev},
     title = {Laplace invariants of hyperbolic equations linearizable by a differential substitution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {237--247},
     publisher = {mathdoc},
     volume = {120},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/}
}
TY  - JOUR
AU  - S. Ya. Startsev
TI  - Laplace invariants of hyperbolic equations linearizable by a differential substitution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 237
EP  - 247
VL  - 120
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/
LA  - ru
ID  - TMF_1999_120_2_a4
ER  - 
%0 Journal Article
%A S. Ya. Startsev
%T Laplace invariants of hyperbolic equations linearizable by a differential substitution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 237-247
%V 120
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/
%G ru
%F TMF_1999_120_2_a4
S. Ya. Startsev. Laplace invariants of hyperbolic equations linearizable by a differential substitution. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 237-247. http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/