Laplace invariants of hyperbolic equations linearizable by a differential substitution
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 237-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundness of the order of generalized Laplace invariants of a scalar hyperbolic equation is a necessary condition for the existence of a differential substitution transforming solutions of the equation into those of a linear hyperbolic equation.
@article{TMF_1999_120_2_a4,
     author = {S. Ya. Startsev},
     title = {Laplace invariants of hyperbolic equations linearizable by a differential substitution},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {237--247},
     year = {1999},
     volume = {120},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/}
}
TY  - JOUR
AU  - S. Ya. Startsev
TI  - Laplace invariants of hyperbolic equations linearizable by a differential substitution
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 237
EP  - 247
VL  - 120
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/
LA  - ru
ID  - TMF_1999_120_2_a4
ER  - 
%0 Journal Article
%A S. Ya. Startsev
%T Laplace invariants of hyperbolic equations linearizable by a differential substitution
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 237-247
%V 120
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/
%G ru
%F TMF_1999_120_2_a4
S. Ya. Startsev. Laplace invariants of hyperbolic equations linearizable by a differential substitution. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 237-247. http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a4/

[1] I. M. Anderson, N. Kamran, The variational bicomplex for second order scalar partial differential equations in the plane, Preprint, Centre de Recherches Mathematiques, Montreal, 1994 | MR

[2] A. V. Zhiber, V. V. Sokolov, S. Ya. Startsev, Doklady RAN, 343 (1995), 746 | MR | Zbl

[3] V. V. Sokolov, A. V. Zhiber, Phys. Lett. A, 208 (1995), 303 | DOI | MR | Zbl

[4] I. M. Anderson, M. Juras, Generalized Laplace invariant and the Method of Darboux, Preprint, Centre de Recherches Mathematiques, Montreal, 1995 | MR

[5] A. V. Zhiber, V. V. Sokolov, “Preobrazovaniya Laplasa v klassifikatsii integriruemykh kvazilineinykh uravnenii”, Problemy mekhaniki i upravleniya, T. 2, ed. R. R. Mavlyutov, Institut mekhaniki RAN, Ufa, 1996, 112

[6] S. Ya. Startsev, “Ob invariantakh Laplasa sistem giperbolicheskikh uravnenii”, Kompleksnyi analiz, differentsialnye uravneniya, chislennye metody i prilozheniya, T. 3, eds. I. F. Krasichkov-Ternovskii, L. A. Kalyakin, M. D. Ramazanov, Institut matematiki s VTs UNTs RAN, Ufa, 1996, 144

[7] S. Ya. Startsev, TMF, 116:3 (1998), 336 | DOI | MR | Zbl

[8] S. Ya. Startsev, “Analog variatsionnoi proizvodnoi dlya giperbolicheskikh uravnenii”, Problemy matematiki i teorii upravleniya, UGATU, Ufa, 1998, 174

[9] V. V. Sokolov, S. I. Svinolupov, Eur. J Appl. Math., 6 (1995), 145 | DOI | MR | Zbl

[10] E. Goursat, Bull. Soc. Math. France, 25 (1897), 36 | DOI | MR