Modulation instability of soliton trains in fiber communication systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 222-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linear stability problem for a soliton train described by the nonlinear Schrödinger equation is exactly solved using a linearization of the Zakharov–Shabat dressing procedure. This problem is reduced to finding a compatible solution of two linear equations. This approach allows the growth rate of the soliton lattice instability and the corresponding eigenfunctions to be found explicitly in a purely algebraic way. The growth rate can be expressed in terms of elliptic functions. Analysis of the dispersion relations and eigenfunctions shows that the solution, which has the form of a soliton train, is stable for defocusing media and unstable for focusing media with arbitrary parameters. Possible applications of the stability results to fiber communication systems are discussed.
@article{TMF_1999_120_2_a3,
     author = {E. A. Kuznetsov and M. D. Spector},
     title = {Modulation instability of soliton trains in fiber communication systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {222--236},
     year = {1999},
     volume = {120},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a3/}
}
TY  - JOUR
AU  - E. A. Kuznetsov
AU  - M. D. Spector
TI  - Modulation instability of soliton trains in fiber communication systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 222
EP  - 236
VL  - 120
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a3/
LA  - ru
ID  - TMF_1999_120_2_a3
ER  - 
%0 Journal Article
%A E. A. Kuznetsov
%A M. D. Spector
%T Modulation instability of soliton trains in fiber communication systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 222-236
%V 120
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a3/
%G ru
%F TMF_1999_120_2_a3
E. A. Kuznetsov; M. D. Spector. Modulation instability of soliton trains in fiber communication systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 222-236. http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a3/

[1] A. Hasegawa, F. Tappet, Appl. Phys. Lett., 23 (1973), 142 | DOI

[2] V. E. Zakharov, A. B. Shabat, ZhETF, 61 (1971), 118

[3] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. B. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI | Zbl

[4] L. F. Mollenauer, R. H. Stolen, M. N. Islam, Opt. Lett., 10 (1985), 229 | DOI

[5] L. F. Mollenauer, E. Lichtman, M. J. Neibelt, G. T. Harvey, Electron. Lett., 29 (1993), 910 | DOI

[6] L. F. Mollenauer, J. P. Gordon, P. V. Mamyshev, “Solitons in high bit-rate, long-distance transmission”, Optical Fiber Telecommunications, Vol. III A, Chap. 12, eds. I. P. Karamzin, T. L. Koch, Academic Press, San Diego, 1997, 373 | DOI

[7] T. V. Benjamin, J. E. Feir, J. Fluid Mech., 27 (1967), 417 | DOI | Zbl

[8] V. E. Zakharov, “Collapse and Self-Focusing of the Langmure Waves”, Handbook of Plasma Physics, v. 3, eds. A. Galeev, R. Sudan, Elsevier, Amsterdam, 1984, 81

[9] M. D. Spector, unpublished, 1988

[10] E. A. Kuznetsov, M. D. Spector, G. E. Falkovich, Physica D, 10 (1984), 379 | DOI | MR | Zbl

[11] V. E. Zakharov, A. B. Shabat, Funkts. analiz i ego prilozh., 13 (1979), 13 | MR | Zbl

[12] V. E. Zakharov, A. B. Shabat, ZhETF, 64 (1972), 1627

[13] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Academic Press, Cambridge, 1952 ; Э. Т. Уиттекер, Дж. Н. Ватсон, Курс современного анализа, В двух частях, Физматгиз, М., 1962–1963 | MR

[14] E. A. Kuznetsov, A. V. Mikhailov, ZhETF, 66 (1974), 1717

[15] E. A. Kuznetsov, DAN SSSR, 326 (1977), 575

[16] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR