Upper estimate of the cardinality of the set of knots generated by one- and two-dimensional braids
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 208-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give the upper estimate for the cardinality of the set $\Omega(n,\mu)$ of knots generated by closed one- and two-dimensional braids with $n$ generators of the irreducible length $\mu$ in the limit as $n\gg1$ and $\mu\gg1$.
@article{TMF_1999_120_2_a2,
     author = {R. R. Bikbov and S. K. Nechaev},
     title = {Upper estimate of the cardinality of the set of knots generated by one- and two-dimensional braids},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {208--221},
     year = {1999},
     volume = {120},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a2/}
}
TY  - JOUR
AU  - R. R. Bikbov
AU  - S. K. Nechaev
TI  - Upper estimate of the cardinality of the set of knots generated by one- and two-dimensional braids
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 208
EP  - 221
VL  - 120
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a2/
LA  - ru
ID  - TMF_1999_120_2_a2
ER  - 
%0 Journal Article
%A R. R. Bikbov
%A S. K. Nechaev
%T Upper estimate of the cardinality of the set of knots generated by one- and two-dimensional braids
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 208-221
%V 120
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a2/
%G ru
%F TMF_1999_120_2_a2
R. R. Bikbov; S. K. Nechaev. Upper estimate of the cardinality of the set of knots generated by one- and two-dimensional braids. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 2, pp. 208-221. http://geodesic.mathdoc.fr/item/TMF_1999_120_2_a2/

[1] J. Nadal, B. Derrida, J. Vannimenus, J. de Physique, 43 (1982), 1561 ; V. Hakim, J. Nadal, J. Phys. A, 16 (1983), L213 | DOI | MR | DOI | MR

[2] A. Vershik, S. Nechaev, R. Bikbov, Commun. Math. Phys. (to appear) | MR

[3] L. Paris, D. Rolfsen, Geometric subgroups of surface braid groups, Preprint No 115, Université de Bourgogne, Laboratoire de Topologie, Dijon, 1997 | MR

[4] J. Birman, Contemp. Math., 78, 1988, 13 | DOI | MR | Zbl

[5] A. M. Vershik, S. V. Kerov, DAN SSSR, 301:4 (1988), 777 ; A. M. Vershik, Topics in Algebra, Pt. 2, 26, 1990, 467 ; Proc. Am. Math. Soc., 148 (1991), 1 | MR | Zbl | MR | Zbl

[6] S. K. Nechaev, A. Yu. Grosberg, A. M. Vershik, J. Phys. A: Math. Gen., 29 (1996), 2411 | DOI | MR | Zbl

[7] P. Cartier, D. Foata, “Problèmes combinatories de commutation et réarrangements”, Lect. Notes in Math., 85, Springer-Verlag, New York–Berlin, 1969 | DOI | MR | Zbl

[8] G. X. Viennot, “Heaps of pieces. I: Basic definitions and combinatorial lemmas”, Combinatoire énumérative, Proc. of the Colloque de combinatoire énumérative (Université du Québec à Montréal, May 28 – June 1, 1985), Lect. Notes in Math., 1234, eds. G. Labelle et P. Leroux, Springer, Berlin, 1986, 321 | DOI | MR

[9] A. M. Vershik, UMN, 53:5 (1998), 57 | DOI | MR | Zbl