The reduced semiclassical description method
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 99-115 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We develop a new version of the semiclassical analysis of a system of bound states in centrally symmetrical potentials. The set of potentials is in a $1:1$ correspondence with a certain set of pairs of functions of the orbital momentum. The first of these functions determines the usual WKB quantization condition and groups the potentials into equivalence classes. Its Mellin transform demonstrates similar behavior for the typical potentials, which allows describing the equivalence class with a small number of parameters. We can chose these parameters as the asymptotically exact estimates of the number of states. We obtain an equation that allows classifying states in a self-consistent atomic potential without knowing the explicit form of the potential. The second of these functions distinguishes the potentials within an equivalence class and also gives the first correction to the quantization condition.
@article{TMF_1999_120_1_a7,
     author = {A. A. Lobashev and N. N. Trunov},
     title = {The reduced semiclassical description method},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {99--115},
     year = {1999},
     volume = {120},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a7/}
}
TY  - JOUR
AU  - A. A. Lobashev
AU  - N. N. Trunov
TI  - The reduced semiclassical description method
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 99
EP  - 115
VL  - 120
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a7/
LA  - ru
ID  - TMF_1999_120_1_a7
ER  - 
%0 Journal Article
%A A. A. Lobashev
%A N. N. Trunov
%T The reduced semiclassical description method
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 99-115
%V 120
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a7/
%G ru
%F TMF_1999_120_1_a7
A. A. Lobashev; N. N. Trunov. The reduced semiclassical description method. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 99-115. http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a7/

[1] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[2] V. A. Fok, UFN, 16 (1936), 1070 | DOI

[3] B. N. Zakharev, Uroki kvantovoi intuitsii, OIYaI, Dubna, 1996

[4] Yu. V. Tarbeev, N. N. Trunov, A. A. Lobashev, V. V. Kukhar, ZhETF, 112 (1997), 1226

[5] M. S. Marinov, V. S. Popov, ZhETF, 67 (1974), 1250

[6] V. M. Galitskii, B. M. Karnakov, V. I. Kogan, Zadachi po kvantovoi mekhanike, Nauka, M., 1992 | MR

[7] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4. Analiz operatorov, Mir, M., 1982 | MR

[8] B. Simon, “On the number of bound states of two-body Schrödinger operators”, Studies in Mathematical Physics, Essays in honor of V. Bargmann, eds. E. Lieb, B. Simon, A. S. Wightman, Princeton Univ. Press, Princeton, 1976, 305 | MR

[9] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 3. Kvantovaya mekhanika, Nauka, M., 1989 | MR

[10] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 1. Mekhanika, Nauka, M., 1988 | MR

[11] T. Tietz, J. Chem. Phys., 22 (1954), 2094 ; Nuovo Cimento, 1 (1955), 955 | DOI | DOI | MR

[12] Yu. N. Demkov, V. N. Ostrovskii, ZhETF, 62 (1972), 125

[13] V. N. Ostrovsky, J. Phys. B, 14 (1981), 4425 | DOI

[14] M. A. Evgrafov, Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR | Zbl

[15] M. A. Evgrafov, Analiticheskie funktsii, Nauka, M., 1968 | MR | Zbl

[16] Yu. N. Demkov, V. N. Ostrovskii, ZhETF, 60 (1971), 2011

[17] M. Dineikhan, G. V. Efimov, EChAYa, 26:3 (1995), 651

[18] A. S. Vshivtsev, V. O. Galkin, A. V. Tatarintsev, R. N. Faustov, TMF, 113:3 (1997), 397 | DOI | MR | Zbl