Nonperturbative effective action of the $N=1$ supersymmetric Yang–Mills theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 82-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nonperturbative effects in the $N=1$ supersymmetric Yang–Mills theory are studied using the relation between perturbative and exact anomalies. In the general case, a superpotential is generated by instantons and must contain the gluino condensate. The exact expression for the superpotential is obtained.
@article{TMF_1999_120_1_a6,
     author = {P. I. Pronin and K. V. Stepanyantz},
     title = {Nonperturbative effective action of the $N=1$ supersymmetric {Yang{\textendash}Mills} theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {82--98},
     year = {1999},
     volume = {120},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a6/}
}
TY  - JOUR
AU  - P. I. Pronin
AU  - K. V. Stepanyantz
TI  - Nonperturbative effective action of the $N=1$ supersymmetric Yang–Mills theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 82
EP  - 98
VL  - 120
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a6/
LA  - ru
ID  - TMF_1999_120_1_a6
ER  - 
%0 Journal Article
%A P. I. Pronin
%A K. V. Stepanyantz
%T Nonperturbative effective action of the $N=1$ supersymmetric Yang–Mills theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 82-98
%V 120
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a6/
%G ru
%F TMF_1999_120_1_a6
P. I. Pronin; K. V. Stepanyantz. Nonperturbative effective action of the $N=1$ supersymmetric Yang–Mills theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 82-98. http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a6/

[1] G. 't Hooft, Phys. Rev. Lett., 37 (1976), 8 | DOI

[2] M. Shifman, A. Vainstein, V. Zakharov, Nucl. Phys. B, 165 (1980), 45 ; V. Novikov, M. Shifman, A. Vainstein, V. Zakharov, Nucl. Phys. B, 229 (1983), 407 ; 260 (1985), 157 | DOI | MR | DOI | DOI | MR

[3] N. Seiberg, E. Witten, Nucl. Phys. B, 426 (1994), 19 | DOI | MR | Zbl

[4] D. Finnell, P. Pouliot, Nucl. Phys. B, 453 (1995), 225 | DOI

[5] A. Yung, Nucl. Phys. B, 485 (1997), 38 | DOI | MR | Zbl

[6] I. Affleck, M. Dine, N. Seiberg, Nucl. Phys. B, 241 (1984), 493 | DOI | MR

[7] N. Seiberg, Phys. Rev. D, 49 (1994), 6857 | DOI | MR

[8] G. Veneziano, S. Yankielowicz, Phys. Lett. B, 113 (1982), 231 ; T. Taylor, G. Veneziano, S. Yankielowicz, Nucl. Phys. B, 218 (1983), 493 | DOI | DOI

[9] V. Novikov, M. Shifman, A. Vainstein, V. Zakharov, Nucl. Phys. B, 229 (1983), 394 | DOI

[10] S. Cordes, Nucl. Phys. B, 273 (1986), 629 | DOI

[11] C. Callan, R. Dashen, D. Gross, Phys. Rev. D, 17 (1978), 2717 | DOI

[12] P. I. Pronin, K. V. Stepanyants, TMF, 115 (1998), 402 | DOI | MR | Zbl

[13] K. Fujikawa, Phys. Rev. Lett., 42 (1979), 1195 ; 44 (1980), 1733 | DOI | DOI | MR

[14] K. Intriligator, R. Leigh, N. Seiberg, Phys. Rev. D, 50 (1994), 1092 | DOI | MR

[15] N. Seiberg, Phys. Lett. B, 206 (1988), 75 | DOI | MR

[16] A. Bilal, Duality in $N=2$ SUSY $SU(2)$ Yang–Mills theory: A pedagogical introduction to the work of Seiberg and Witten, E-print hep-th/9601007 | MR

[17] G. Bonelli, M. Matone, M. Tonin, Phys. Rev. D, 55 (1997), 6466 | DOI | MR

[18] M. Peskin, Duality in supersymmetric Yang–Mills theory, E-print hep-th/9702094 | MR