Vacuum energy induced by a singular magnetic vortex
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 72-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A singular vortex configuration of a static external magnetic field polarizes the vacuum of a quantum charged scalar field in a space of arbitrary dimension. We use the zeta-function method and the heat kernel method to solve the problem of regularizing and eliminating an ultraviolet divergence and to find the induced vacuum energy density. A sufficient condition for using the zeta-function method to solve the problems in spaces of arbitrary dimension is formulated.
@article{TMF_1999_120_1_a5,
     author = {A. Yu. Babanskii and Yu. A. Sitenko},
     title = {Vacuum energy induced by a singular magnetic vortex},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {72--81},
     year = {1999},
     volume = {120},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a5/}
}
TY  - JOUR
AU  - A. Yu. Babanskii
AU  - Yu. A. Sitenko
TI  - Vacuum energy induced by a singular magnetic vortex
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 72
EP  - 81
VL  - 120
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a5/
LA  - ru
ID  - TMF_1999_120_1_a5
ER  - 
%0 Journal Article
%A A. Yu. Babanskii
%A Yu. A. Sitenko
%T Vacuum energy induced by a singular magnetic vortex
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 72-81
%V 120
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a5/
%G ru
%F TMF_1999_120_1_a5
A. Yu. Babanskii; Yu. A. Sitenko. Vacuum energy induced by a singular magnetic vortex. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 72-81. http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a5/

[1] A. I. Akhiezer, V. B. Berestetskii, Kvantovaya elektrodinamika, Nauka, M., 1981 | MR

[2] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Kvantovye effekty v intensivnykh vneshnikh polyakh, Atomizdat, M., 1980

[3] N. Birell, P. Devis, Kvantovannye polya v iskrivlennom prostranstve-vremeni, Mir, M., 1984 | MR

[4] Yu. A. Sitenko, A. Yu. Babansky, Mod. Phys. Lett. A, 13 (1998), 379 | DOI

[5] Yu. A. Sitenko, D. G. Rakityanskii, YaF, 61 (1998), 876

[6] H. B. G. Casimir, Proc. K Ned. Akad. Wetensc., 51 (1948), 793 ; Physica, 19 (1953), 846 | Zbl | DOI

[7] E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, C. Zerbini, Zeta Regularization Techniques with Applications, World Scientific, Singapore, 1994 | MR | Zbl

[8] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, T. 1, Nauka, M., 1973 | MR

[9] W. Heisenberg, H. Euler, Z. Phys., 98 (1936), 714 | DOI | Zbl

[10] V. Weisskopf, Kgl. Dansk. Vidensk. Selsk., Mat.-Fys. Medd., 16:6 (1936), 1 | Zbl