Finite-dimensional analogues of the string $s\leftrightarrow t$ duality and the pentagon equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 54-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use a variant of the functional pentagon equation (FPE) from the theory of integrable models as an algebraic explanation of the phenomenon known in physics as the $s\leftrightarrow t$ duality. We present two simple geometric examples of FPE solutions, one of which yields the Veneziano four-particle amplitude as a particular case. We interpret our FPE solutions in terms of relations in Lie groups.
@article{TMF_1999_120_1_a3,
     author = {I. G. Korepanov and S. Saito},
     title = {Finite-dimensional analogues of the string $s\leftrightarrow t$ duality and the pentagon equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {54--63},
     year = {1999},
     volume = {120},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a3/}
}
TY  - JOUR
AU  - I. G. Korepanov
AU  - S. Saito
TI  - Finite-dimensional analogues of the string $s\leftrightarrow t$ duality and the pentagon equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 54
EP  - 63
VL  - 120
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a3/
LA  - ru
ID  - TMF_1999_120_1_a3
ER  - 
%0 Journal Article
%A I. G. Korepanov
%A S. Saito
%T Finite-dimensional analogues of the string $s\leftrightarrow t$ duality and the pentagon equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 54-63
%V 120
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a3/
%G ru
%F TMF_1999_120_1_a3
I. G. Korepanov; S. Saito. Finite-dimensional analogues of the string $s\leftrightarrow t$ duality and the pentagon equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 54-63. http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a3/

[1] S. Saito, Phys. Rev. Lett., 59:16 (1987), 1798 | DOI | MR

[2] S. Saito, “Integrability of strings”, Nonlinear Fields: Classical, Random, Semiclassical, eds. P. Garbaczewski and Z. Popovicz, World Scientific, Singapore, 1991, 286 | MR

[3] K. Sogo, J. Phys. Soc. Japan, 56:7 (1987), 2291 | DOI | MR

[4] S. Saito, J. Phys. A, 30 (1997), 8289 | DOI | MR | Zbl

[5] A. B. Zamolodchikov, Commun. Math. Phys., 79 (1981), 489 | DOI | MR

[6] R. M. Kashaev, On discrete 3-dimensional equations associated with the local Yang–Baxter relation, Preprint ENSLAPP-L-569/95, ENS-Lyon, Lyon, 1995 ; E-print solv-int/9512005 | MR

[7] R. M. Kashaev, I. G. Korepanov, S. M. Sergeev, TMF, 117:3 (1998), 370 ; R. M. Kashaev, I. G. Korepanov, and S. M. Sergeev, Functional tetrahedron equation, ; В. В. Фок, Л. О. Чехов, “Квантовые модулярные преобразования, соотношение пятиугольника и геодезические”, Тр. МИАН (в печати) E-print solv-int/9801015 | DOI | MR | Zbl

[8] R. M. Kashaev, S. M. Sergeev, Commun. Math. Phys., 195 (1998), 309 ; On pentagon, ten-term, and tetrahedron relations, E-print q-alg/9607032 | DOI | MR | Zbl

[9] R. M. Kashaev, TMF, 118:3 (1999), 398 | DOI | MR | Zbl

[10] G. Veneziano, Nuovo. Cimento A, 57 (1968), 190 | DOI

[11] M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory, V. 1, Cambridge Univ. Press, Cambridge, 1988 | MR

[12] K. Bardakçi, H. Ruegg, Phys. Lett. B, 28:5 (1968), 342 | DOI

[13] M. A. Virasoro, Phys. Rev. Lett., 22:1 (1969), 37 | DOI

[14] C. J. Goebel, B. Sakita, Phys. Rev. Lett., 22:6 (1969), 257 | DOI

[15] Z. Koba, H. B. Nielsen, Nucl. Phys. B, 12 (1969), 517 | DOI