Noncanonical time transformations relating finite-dimensional integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 27-53 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider dual Stäckel schemes related to each other by a noncanonical transformation of the time variable. We prove that this duality of different integrable systems arises from the multivaluedness of the Abel mapping. We construct the Lax matrices and the $r$-matrix algebras for some integrable systems on a plane. The integrable deformations of the Kepler problem and the Holt-type systems are considered in detail.
@article{TMF_1999_120_1_a2,
     author = {A. V. Tsiganov},
     title = {Noncanonical time transformations relating finite-dimensional integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {27--53},
     year = {1999},
     volume = {120},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a2/}
}
TY  - JOUR
AU  - A. V. Tsiganov
TI  - Noncanonical time transformations relating finite-dimensional integrable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 27
EP  - 53
VL  - 120
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a2/
LA  - ru
ID  - TMF_1999_120_1_a2
ER  - 
%0 Journal Article
%A A. V. Tsiganov
%T Noncanonical time transformations relating finite-dimensional integrable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 27-53
%V 120
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a2/
%G ru
%F TMF_1999_120_1_a2
A. V. Tsiganov. Noncanonical time transformations relating finite-dimensional integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 27-53. http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a2/

[1] S. V. Kovalevskaya, Nauchnye raboty, Izd-vo AN SSSR, M., 1948 | MR

[2] A. Ramani, B. Grammaticos, T. Bountis, Phys. Rep., 180:3 (1989), 159 | DOI | MR

[3] E. L. Ince, Ordinary Differential Equations, Dover, New York, 1956 | MR

[4] O. I. Bogoyavlenskii, Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR | Zbl

[5] M. Adler, P. van Moerbeke, Invent. Math., 97 (1989), 3 | DOI | MR | Zbl

[6] S. I. Ziglin, Funkts. analiz i ego prilozh., 16:3 (1982), 30 ; 17:1 (1983), 1 | MR | Zbl | MR | Zbl

[7] G. V. Kolosov, Tr. Otd. fiz. nauk Obschestva lyubitelei estestvoznaniya, 11(1) (1901), 5

[8] M. Adler, P. van Moerbeke, Commun. Math. Phys., 113 (1988), 659 | DOI | MR

[9] L. Haine, E. Horozov, Physica D, 29 (1987), 173 | DOI | MR | Zbl

[10] J. Moser, Commun. Pure Appl. Math., 23 (1970), 609 | DOI | MR | Zbl

[11] G. Goldstein, Klassicheskaya mekhanika, Gostekhizdat, M., 1957

[12] J. Drach, C. R. Acad. Sci. Paris, 200 (1935), 22 | Zbl

[13] P. Stäckel, C. R. Acad. Sci. Paris, 116 (1893), 485; 1284 ; 121, 489 | Zbl

[14] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Izd. 3-e, Nauka, M., 1989 | MR

[15] A. V. Tsyganov, TMF, 115:1 (1998), 3 | DOI | MR | Zbl

[16] B. A. Dubrovin, UMN, 36 (1981), 11 | MR

[17] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, Rev. Math. and Math. Phys., 10 (1997), 1 | MR

[18] M. Noether, Math. Ann., 28 (1887), 354 | DOI

[19] O. Bolza, Am. J. Math., 17 (1895), 11 | DOI | MR

[20] A. V. Tsiganov, J. Math. Phys., 39 (1998), 650 | DOI | MR | Zbl

[21] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[22] S. Khoroshkin, A. Stolin, V. Tolstoy, “Rational solutions of Yang–Baxter equation and deformation of Yangians”, From Field Theory to Quantum Groups, eds. B. Jancewicz and J. Sobczyk, World Scientific, River Edge, N. Y., 1996, 53 | DOI | MR | Zbl

[23] A. V. Tsiganov, J. Phys. A, 27 (1994), 6759 | DOI | MR | Zbl

[24] A. V. Tsiganov, J. Phys. A, 31 (1998), 8049 | DOI | MR | Zbl