Noncanonical time transformations relating finite-dimensional integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 27-53
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider dual Stäckel schemes related to each other by a noncanonical transformation of the time variable. We prove that this duality of different integrable systems arises from the multivaluedness of the Abel mapping. We construct the Lax matrices and the $r$-matrix algebras for some integrable systems on a plane. The integrable deformations of the Kepler problem and the Holt-type systems are considered in detail.
@article{TMF_1999_120_1_a2,
author = {A. V. Tsiganov},
title = {Noncanonical time transformations relating finite-dimensional integrable systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {27--53},
publisher = {mathdoc},
volume = {120},
number = {1},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a2/}
}
TY - JOUR AU - A. V. Tsiganov TI - Noncanonical time transformations relating finite-dimensional integrable systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 27 EP - 53 VL - 120 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a2/ LA - ru ID - TMF_1999_120_1_a2 ER -
A. V. Tsiganov. Noncanonical time transformations relating finite-dimensional integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 27-53. http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a2/