New example of a nonlinear hyperbolic equation possessing integrals
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 20-26 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discover an important new case in the classical problem of the classification of nonlinear hyperbolic equations possessing integrals. In the general (least degenerate) case, in addition, we obtain a formula describing the splitting of the right-hand side of such equations with respect to the first derivatives.
@article{TMF_1999_120_1_a1,
     author = {A. V. Zhiber and V. V. Sokolov},
     title = {New example of a nonlinear hyperbolic equation possessing integrals},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {20--26},
     year = {1999},
     volume = {120},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a1/}
}
TY  - JOUR
AU  - A. V. Zhiber
AU  - V. V. Sokolov
TI  - New example of a nonlinear hyperbolic equation possessing integrals
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 20
EP  - 26
VL  - 120
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a1/
LA  - ru
ID  - TMF_1999_120_1_a1
ER  - 
%0 Journal Article
%A A. V. Zhiber
%A V. V. Sokolov
%T New example of a nonlinear hyperbolic equation possessing integrals
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 20-26
%V 120
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a1/
%G ru
%F TMF_1999_120_1_a1
A. V. Zhiber; V. V. Sokolov. New example of a nonlinear hyperbolic equation possessing integrals. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 20-26. http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a1/

[1] G. Darboux, Leçons sur la theorie general des surface, Tome II, Hermann, Paris, 1915 | MR

[2] E. Goursat, Leşons sur l'intégration des équations aux dérivées partielles du second ordre à deux variables indépendantes, Tome I, Hermann, Paris, 1896; Tome II, 1898

[3] E. Vessiot, J. Math. Pure Appl., 18 (1939), 1–61 | DOI | MR | Zbl

[4] A. V. Zhiber, Izv. RAN. Ser. matem., 58:4 (1994), 33–54 | Zbl

[5] A. V. Zhiber, “Vysshie simmetrii uravnenii tipa Liuvillya”, Matematicheskie metody fiziki, Trudy Vserossiiskoi nauchnoi konf. “Fizika kondensirovannogo sostoyaniya”. T. 1, eds. K. B. Sabitov (otv. za vypusk), F. Kh. Mukminov, V. F. Volkodavov, S. V. Khabirov, Sterlitamakskii filial AN RB, SGPI, Sterlitamak, 1997, 54–57

[6] M. Yu. Zvyagin, DAN SSSR, 316:1 (1991), 36–40 | MR | Zbl

[7] A. B. Borisov, S. A. Zykov, TMF, 115:2 (1998), 199–214 | DOI | MR | Zbl

[8] A. V. Zhiber, A. B. Shabat, DAN SSSR, 277:1 (1984), 29–33 | MR | Zbl