Exact solutions of the Liouville equation in multidimensional spaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 3-19
Cet article a éte moissonné depuis la source Math-Net.Ru
Exact solutions of the multidimensional Liouville equation, which are sought in the class of functional forms of the degree $n$ equal to the coordinate space dimension, are constructed based on a special representation of the Laplace and D'Alembert equations. The corresponding Liouville equation solutions are completely described in the coordinate space dimensions $d=3,4$. For $d>4$, the general solution form and the method for obtaining algebraic equations for the coefficients of functional $n$-forms is presented.
@article{TMF_1999_120_1_a0,
author = {V. M. Zhuravlev},
title = {Exact solutions of the {Liouville} equation in multidimensional spaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--19},
year = {1999},
volume = {120},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a0/}
}
V. M. Zhuravlev. Exact solutions of the Liouville equation in multidimensional spaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 120 (1999) no. 1, pp. 3-19. http://geodesic.mathdoc.fr/item/TMF_1999_120_1_a0/
[1] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980 | MR
[2] R. Bullaf, F. Kodri (red.), Solitony, Mir, M., 1983
[3] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988 | MR
[4] A. N. Leznov, M. V. Savelev, Gruppovye metody integrirovaniya nelineinykh dinamicheskikh sistem, Nauka, M., 1985 | MR | Zbl
[5] V. M. Zhuravlev, ZhETF, 110:6 (1996), 2243 | MR
[6] V. M. Zhuravlev, Pisma v ZhETF, 65:3 (1997), 285
[7] V. M. Zhuravlev, ZhETF, 114:5 (1998), 1897 | MR
[8] V. M. Zhuravlev, PMM, 58:6 (1994), 61 | MR