Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 441-454 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the variational principle, we introduce a new notion: the characteristic electric multipoles constituting a system of basic distributions of charge on the boundary of a spatial domain. Inside the domain, potentials of the characteristic multipoles are harmonic polynomials whose orders determine the minimum orders of nonzero spherical multipole moments of the characteristic multipoles. Using the characteristic multipole formalism, we solve the moment problem in electrostatics and construct the superconductor Lagrangian in an electrostatic field. We express the empty-space Green's function for the Laplace equation using the characteristic multipole potentials.
@article{TMF_1999_119_3_a7,
     author = {V. P. Kazantsev},
     title = {Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--454},
     year = {1999},
     volume = {119},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a7/}
}
TY  - JOUR
AU  - V. P. Kazantsev
TI  - Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 441
EP  - 454
VL  - 119
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a7/
LA  - ru
ID  - TMF_1999_119_3_a7
ER  - 
%0 Journal Article
%A V. P. Kazantsev
%T Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 441-454
%V 119
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a7/
%G ru
%F TMF_1999_119_3_a7
V. P. Kazantsev. Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 441-454. http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a7/

[1] Dzh. Dzhekson, Klassicheskaya elektrodinamika, Mir, M., 1965

[2] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, L., 1975

[3] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, GIFML, M., 1962 | MR

[4] V. P. Kazantsev, E. I. Kuklin, Radiotekhnika i elektronika, 35:12 (1989), 2498

[5] L. D. Landau, E. M. Lifshits, Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR

[6] Yu. Ya. Iossel, E. S. Kochanov, M. G. Strunskii, Raschet elektricheskoi emkosti, Energoizdat, L., 1971

[7] V. P. Kazantsev, Variatsionnye printsipy, kharakteristicheskie multipoli i vysshie polyarizuemosti v teorii polya, Deponirovano v VINITI, No 2098-V97, VINITI, M., 1997

[8] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[9] K. Rektoris, Variatsionnye metody v matematicheskoi fizike i tekhnike, Mir, M., 1985 | MR | Zbl

[10] N. I. Akhiezer, Klassicheskaya problema momentov, GIFML, M., 1961

[11] G. Goldstein, Klassicheskaya mekhanika, Nauka, M., 1974 | MR

[12] V. I. Smirnov, Kurs vysshei matematiki, Tom 4. Chast 2, Nauka, M., 1979 | MR