Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 441-454
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Based on the variational principle, we introduce a new notion: the characteristic electric multipoles constituting a system of basic distributions of charge on the boundary of a spatial domain. Inside the domain, potentials of the characteristic multipoles are harmonic polynomials whose orders determine the minimum orders of nonzero spherical multipole moments of the characteristic multipoles. Using the characteristic multipole formalism, we solve the moment problem in electrostatics and construct the superconductor Lagrangian in an electrostatic field. We express the empty-space Green's function for the Laplace equation using the characteristic multipole potentials.
			
            
            
            
          
        
      @article{TMF_1999_119_3_a7,
     author = {V. P. Kazantsev},
     title = {Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--454},
     publisher = {mathdoc},
     volume = {119},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a7/}
}
                      
                      
                    TY - JOUR AU - V. P. Kazantsev TI - Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 441 EP - 454 VL - 119 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a7/ LA - ru ID - TMF_1999_119_3_a7 ER -
%0 Journal Article %A V. P. Kazantsev %T Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory %J Teoretičeskaâ i matematičeskaâ fizika %D 1999 %P 441-454 %V 119 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a7/ %G ru %F TMF_1999_119_3_a7
V. P. Kazantsev. Variational principle, characteristic electric multipoles, and higher polarizing moments in field theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 441-454. http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a7/