Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 381-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nondegenerate $\sigma$-additive measures with ranges in $\mathbb R$ and $\mathbb Q_q$ ($q\ne p$ are prime numbers) that are quasi-invariant and pseudodifferentiable with respect to dense subgroups $G'$ are constructed on diffeomorphism and homeomorphism groups $G$ for separable non-Archimedean Banach manifolds $M$ over a local field $\mathbb K$, $\mathbb K\supset\mathbb Q_p$, where $\mathbb Q_p$ is the field of $p$-adic numbers. These measures and the associated irreducible representations are used in the non-Archimedean gravitation theory.
@article{TMF_1999_119_3_a2,
     author = {S. V. Lyudkovskii},
     title = {Measures on diffeomorphism groups for {non-Archimedean} manifolds: {Group} representations and their applications},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {381--396},
     year = {1999},
     volume = {119},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a2/}
}
TY  - JOUR
AU  - S. V. Lyudkovskii
TI  - Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 381
EP  - 396
VL  - 119
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a2/
LA  - ru
ID  - TMF_1999_119_3_a2
ER  - 
%0 Journal Article
%A S. V. Lyudkovskii
%T Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 381-396
%V 119
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a2/
%G ru
%F TMF_1999_119_3_a2
S. V. Lyudkovskii. Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 381-396. http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a2/

[1] C. J. Isham, “Topological and global aspects of quantum theory”, Relativity, Groups and Topology, V. II, ed. B. S. De Witt, North-Holland, Amsterdam, 1984, 1059 | MR

[2] I. Ya. Aref'eva, B. Dragovich, P. H. Frampton, I. V. Volovich, Int. J. Mod. Phys., 6 (1991), 4341 | DOI | MR | Zbl

[3] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adicheskii analiz i matematicheskaya fizika, Fiz.-mat. lit.; Nauka, M., 1994 | MR | Zbl

[4] A. C. M. van Rooij, Non-Archimedean Functional Analysis, Marcel Dekker Inc., New York, 1978 | MR

[5] S. V. Ludkovsky, Southeast Asian Bull. Math., 22 (1998), 419 | MR | Zbl

[6] S. V. Lyudkovskii, UMN, 51:2 (1996), 169 | DOI | MR | Zbl

[7] S. V. Lyudkovskii, UMN, 53:3 (1996), 203 | DOI | MR

[8] S. V. Ludkovsky, Representations and structure of groups of diffeomorphisms of non-Archimedean Banach manifolds. I; II, Preprints No IC/96/180 ; No IC/96/181, Int. Cent. Theor. Phys., Trieste, 1996; http://www.ictp.trieste.it | MR

[9] E. T. Shavgulidze, DAN SSSR, 303:4 (1988), 811 | MR

[10] W. H. Schikhof, Ultrametric calculus, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[11] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v beskonechnomernom prostranstve, Nauka, M., 1983 | MR

[12] V. S. Vladimirov, UMN, 43:5 (1989), 17

[13] S. V. Ludkovsky, Quasi-invariant and pseudo-differentiable measures on a non-Archimedean Banach space, Preprint IC/96/210, 1996 ; No {3353-B97}, 17.11.1997, Int. Cent. Theor. Phys., Trieste; ВИНИТИ, М., 1997 | MR

[14] J. M. G. Fell, R. S. Doran, Representations of $*$-Algebras, Locally Compact Groups, and Banach $*$-Algebraic Bundles, Acad. Press, Boston, 1988 | MR