Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 381-396
Voir la notice de l'article provenant de la source Math-Net.Ru
Nondegenerate $\sigma$-additive measures with ranges in $\mathbb R$ and $\mathbb Q_q$ ($q\ne p$ are prime numbers) that are quasi-invariant and pseudodifferentiable with respect to dense subgroups $G'$ are constructed on diffeomorphism and homeomorphism groups $G$ for separable non-Archimedean Banach manifolds $M$ over a local field $\mathbb K$, $\mathbb K\supset\mathbb Q_p$, where $\mathbb Q_p$ is the field of $p$-adic numbers. These measures and the associated irreducible representations are used in the non-Archimedean gravitation theory.
@article{TMF_1999_119_3_a2,
author = {S. V. Lyudkovskii},
title = {Measures on diffeomorphism groups for {non-Archimedean} manifolds: {Group} representations and their applications},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {381--396},
publisher = {mathdoc},
volume = {119},
number = {3},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a2/}
}
TY - JOUR AU - S. V. Lyudkovskii TI - Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 381 EP - 396 VL - 119 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a2/ LA - ru ID - TMF_1999_119_3_a2 ER -
%0 Journal Article %A S. V. Lyudkovskii %T Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications %J Teoretičeskaâ i matematičeskaâ fizika %D 1999 %P 381-396 %V 119 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a2/ %G ru %F TMF_1999_119_3_a2
S. V. Lyudkovskii. Measures on diffeomorphism groups for non-Archimedean manifolds: Group representations and their applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 381-396. http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a2/