Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 517-528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new model of gravitational and electromagnetic interactions is constructed as a version of the classical Kaluza–Klein theory based on a five-dimensional manifold as the physical space–time. The velocity space of moving particles in the model remains four-dimensional as in the standard relativity theory. The spaces of particle velocities constitute a four-dimensional distribution over a smooth five-dimensional manifold. This distribution depends only on the electromagnetic field and is independent of the metric tensor field. We prove that the equations for the geodesics whose velocity vectors always belong to this distribution are the same as the charged particle equations of motion in the general relativity theory. The gauge transformations are interpreted in geometric terms as a particular form of coordinate transformations on the five-dimensional manifold.
@article{TMF_1999_119_3_a11,
     author = {V. R. Krym},
     title = {Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {517--528},
     year = {1999},
     volume = {119},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a11/}
}
TY  - JOUR
AU  - V. R. Krym
TI  - Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 517
EP  - 528
VL  - 119
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a11/
LA  - ru
ID  - TMF_1999_119_3_a11
ER  - 
%0 Journal Article
%A V. R. Krym
%T Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 517-528
%V 119
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a11/
%G ru
%F TMF_1999_119_3_a11
V. R. Krym. Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 517-528. http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a11/

[1] V. Gromov, Carnot–Carathéodory spaces seen from within, Preprint IHES/M/94/6, Institut des Hautes Etudes Scientifiques, Bures-Sur-Yvette, 1994 | MR

[2] V. R. Krym, TMF, 119:2 (1999), 264–281 | DOI | MR | Zbl

[3] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, GIFML, M., 1961 | MR

[4] N. N. Petrov, Vestn. SPbGU. Ser. 1, 1993, no. 3, 28–32 | MR | Zbl

[5] R. Montgomery, J. Dynam. Control Systems, 1 (1995), 49–90 | DOI | MR | Zbl

[6] R. Montgomery, Progr. Math., 144 (1996), 325–339 | Zbl

[7] N. Straumann, “Early History of Gauge Theories and Weak Interactions”, Invited Talk at the PSI Summer School on Physics with Neutrinos (Zuoz, Switzerland), 1996 ; E-print hep-ph/9609230, http://xxx.lanl.gov

[8] H. Weyl, Z. Phys., 56 (1929), 330–352 | DOI | Zbl

[9] R. Coquereaux, A. Jadczyk, Commun. Math. Phys., 90 (1983), 79–100 | DOI | MR | Zbl