@article{TMF_1999_119_3_a11,
author = {V. R. Krym},
title = {Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {517--528},
year = {1999},
volume = {119},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a11/}
}
TY - JOUR AU - V. R. Krym TI - Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 517 EP - 528 VL - 119 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a11/ LA - ru ID - TMF_1999_119_3_a11 ER -
%0 Journal Article %A V. R. Krym %T Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions %J Teoretičeskaâ i matematičeskaâ fizika %D 1999 %P 517-528 %V 119 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a11/ %G ru %F TMF_1999_119_3_a11
V. R. Krym. Geodesic equations for a charged particle in the unified theory of gravitational and electromagnetic interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 517-528. http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a11/
[1] V. Gromov, Carnot–Carathéodory spaces seen from within, Preprint IHES/M/94/6, Institut des Hautes Etudes Scientifiques, Bures-Sur-Yvette, 1994 | MR
[2] V. R. Krym, TMF, 119:2 (1999), 264–281 | DOI | MR | Zbl
[3] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, GIFML, M., 1961 | MR
[4] N. N. Petrov, Vestn. SPbGU. Ser. 1, 1993, no. 3, 28–32 | MR | Zbl
[5] R. Montgomery, J. Dynam. Control Systems, 1 (1995), 49–90 | DOI | MR | Zbl
[6] R. Montgomery, Progr. Math., 144 (1996), 325–339 | Zbl
[7] N. Straumann, “Early History of Gauge Theories and Weak Interactions”, Invited Talk at the PSI Summer School on Physics with Neutrinos (Zuoz, Switzerland), 1996 ; E-print hep-ph/9609230, http://xxx.lanl.gov
[8] H. Weyl, Z. Phys., 56 (1929), 330–352 | DOI | Zbl
[9] R. Coquereaux, A. Jadczyk, Commun. Math. Phys., 90 (1983), 79–100 | DOI | MR | Zbl