Gauge-periodic point perturbations on the Lobachevsky plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 368-380

Voir la notice de l'article provenant de la source Math-Net.Ru

We study periodic point perturbations of the Shrödinger operator with a uniform magnetic field on the Lobachevsky plane. We prove that the spectrum gaps of the perturbed operator are labeled by the elements of the $K_0$ group of a $C^*$ algebra associated with the operator. In particular, if the $C^*$ algebra has the Kadison property, then the operator spectrum has a band structure.
@article{TMF_1999_119_3_a1,
     author = {J. Br\"uning and V. A. Geiler},
     title = {Gauge-periodic point perturbations on the {Lobachevsky} plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--380},
     publisher = {mathdoc},
     volume = {119},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/}
}
TY  - JOUR
AU  - J. Brüning
AU  - V. A. Geiler
TI  - Gauge-periodic point perturbations on the Lobachevsky plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 368
EP  - 380
VL  - 119
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/
LA  - ru
ID  - TMF_1999_119_3_a1
ER  - 
%0 Journal Article
%A J. Brüning
%A V. A. Geiler
%T Gauge-periodic point perturbations on the Lobachevsky plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 368-380
%V 119
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/
%G ru
%F TMF_1999_119_3_a1
J. Brüning; V. A. Geiler. Gauge-periodic point perturbations on the Lobachevsky plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 368-380. http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/