Gauge-periodic point perturbations on the Lobachevsky plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 368-380 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study periodic point perturbations of the Shrödinger operator with a uniform magnetic field on the Lobachevsky plane. We prove that the spectrum gaps of the perturbed operator are labeled by the elements of the $K_0$ group of a $C^*$ algebra associated with the operator. In particular, if the $C^*$ algebra has the Kadison property, then the operator spectrum has a band structure.
@article{TMF_1999_119_3_a1,
     author = {J. Br\"uning and V. A. Geiler},
     title = {Gauge-periodic point perturbations on the {Lobachevsky} plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--380},
     year = {1999},
     volume = {119},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/}
}
TY  - JOUR
AU  - J. Brüning
AU  - V. A. Geiler
TI  - Gauge-periodic point perturbations on the Lobachevsky plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 368
EP  - 380
VL  - 119
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/
LA  - ru
ID  - TMF_1999_119_3_a1
ER  - 
%0 Journal Article
%A J. Brüning
%A V. A. Geiler
%T Gauge-periodic point perturbations on the Lobachevsky plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 368-380
%V 119
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/
%G ru
%F TMF_1999_119_3_a1
J. Brüning; V. A. Geiler. Gauge-periodic point perturbations on the Lobachevsky plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 368-380. http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/

[1] B. Helffer, J. Sjöstrand, Bull. Soc. Math. France, 117. Suppl:39 (1989), 1 | MR

[2] M. Choi, G. Elliott, N. Yui, Invent. Math., 99 (1990), 225 | DOI | MR | Zbl

[3] M. Shubin, Commun. Math. Phys., 164 (1994), 259 | DOI | MR | Zbl

[4] Y. Last, Commun. Math. Phys., 164 (1994), 421 | DOI | MR | Zbl

[5] T. Sunada, Contemp. Math., 137, 1994, 283 | DOI | MR

[6] J. Brüning, T. Sunada, Astérisque, 210, 1992, 65 | Zbl

[7] T. Sunada, Progr. Theor. Phys., 1994. Suppl, no. 116, 235 | DOI | MR | Zbl

[8] A. L. Carey, K. C. Hannabus, V. Mathai, P. McCann, Commun. Math. Phys., 190 (1998), 629 | DOI | MR | Zbl

[9] Yu. E. Karpeshina, TMF, 57 (1983), 304 | MR

[10] B. S. Pavlov, UMN, 42:6 (1987), 99 | MR

[11] S. Albeverio, F. Gestezi, R. Kheeg-Kron, Kh. Kholden, Reshaemye modeli v kvantovoi mekhanike, Mir, M., 1991 | MR

[12] S. A. Gredeskul, M. Zusman, Y. Avishai, M. Ya. Azbel, Phys. Rep., 288 (1997), 223 | DOI

[13] V. A. Geiler, Algebra i analiz, 3:3 (1991), 1 | MR

[14] Y. Nagaoka, M. Ikegami, Solid State Sci., 109 (1992), 167

[15] C. L. Foden, M. L. Leadbeater, J. H. Burroughes, M. Peppe, J. Phys. Cond. Matter, 6 (1994), L127 | DOI

[16] L. I. Magarill, D. A. Romanov, A. V. Chaplik, ZhETF, 113:4 (1998), 1411

[17] A. Comtet, Ann. Phys., 173 (1987), 185 | DOI | MR

[18] Y. Colin de Verdier, Ann. Inst. Fourier, 32 (1982), 275 | DOI | MR

[19] J. Zak, Phys. Rev., 136 (1964), A776 | DOI | MR

[20] J. Brüning, T. Sunada, Nagoya Math. J, 126 (1992), 159 | DOI | MR | Zbl

[21] M. G. Krein, G. K. Langer, Funkts. analiz i ego prilozh., 5:5 (1971), 59 | MR | Zbl

[22] V. A. Geiler, V. A. Margulis, I. I. Chuchaev, Sib. matem. zhurnal, 36:4 (1995), 828 | MR | Zbl

[23] L. Auslander, C. C. Moore, Mem. Am. Math. Soc., 62, 1966, 1 | MR | Zbl

[24] J. Bellissard, “Gap labelling theorem for Schrödinger operators”, From Number Theory to Physics, eds. M. Waldschmidt et al., Springer-Verlag, Berlin, 1992, 538 | DOI | MR | Zbl

[25] M. A. Shubin, Izv. AN SSSR, 48:3 (1985), 652 | MR