Gauge-periodic point perturbations on the Lobachevsky plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 368-380
Voir la notice de l'article provenant de la source Math-Net.Ru
We study periodic point perturbations of the Shrödinger operator with a uniform magnetic field on the Lobachevsky plane. We prove that the spectrum gaps of the perturbed operator are labeled by the elements of the $K_0$ group of a $C^*$ algebra associated with the operator. In particular, if the $C^*$ algebra has the Kadison property, then the operator spectrum has a band structure.
@article{TMF_1999_119_3_a1,
author = {J. Br\"uning and V. A. Geiler},
title = {Gauge-periodic point perturbations on the {Lobachevsky} plane},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {368--380},
publisher = {mathdoc},
volume = {119},
number = {3},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/}
}
TY - JOUR AU - J. Brüning AU - V. A. Geiler TI - Gauge-periodic point perturbations on the Lobachevsky plane JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 368 EP - 380 VL - 119 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/ LA - ru ID - TMF_1999_119_3_a1 ER -
J. Brüning; V. A. Geiler. Gauge-periodic point perturbations on the Lobachevsky plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 368-380. http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a1/