Change of variable formulas for Feynman pseudomeasures
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 355-367 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive formulas describing the transformations of Feynman pseudomeasures generated by nonlinear permutations of the phase space. In particular, we obtain analogues of the Ramer formula for the Gauss measures and of the change of variable formula proved by Elworthy and Truman.
@article{TMF_1999_119_3_a0,
     author = {O. G. Smolyanov and A. Trumen},
     title = {Change of variable formulas for {Feynman} pseudomeasures},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {355--367},
     year = {1999},
     volume = {119},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a0/}
}
TY  - JOUR
AU  - O. G. Smolyanov
AU  - A. Trumen
TI  - Change of variable formulas for Feynman pseudomeasures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 355
EP  - 367
VL  - 119
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a0/
LA  - ru
ID  - TMF_1999_119_3_a0
ER  - 
%0 Journal Article
%A O. G. Smolyanov
%A A. Trumen
%T Change of variable formulas for Feynman pseudomeasures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 355-367
%V 119
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a0/
%G ru
%F TMF_1999_119_3_a0
O. G. Smolyanov; A. Trumen. Change of variable formulas for Feynman pseudomeasures. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 3, pp. 355-367. http://geodesic.mathdoc.fr/item/TMF_1999_119_3_a0/

[1] S. Albeverio, R. Høgh-Krohn, Mathematical theory of Feynman path integrals, Springer-Verlag, Berlin, 1975 | MR

[2] V. P. Maslov, A. M. Chebotarev, TMF, 28:3 (1976), 291–307 | MR | Zbl

[3] O. G. Smolyanov, M. O. Smolyanova, TMF, 100:1 (1994), 3–13 | MR | Zbl

[4] R. J. Ramer, J. Funct. Anal., 15:2 (1974), 166–187 | DOI | MR | Zbl

[5] D. Elworthy, A. Truman, Ann. Inst. Henri Poincarè, 41:2 (1984), 115–142 | MR | Zbl

[6] S. Albeverio, Z. Brezezniak, J. Math. Phys., 36:5 (1995), 2135–2156 | DOI | MR | Zbl

[7] O. G. Smolyanov, H. V. Weizsaecker, Inf. Dim. Anal. Quant. Prob., 2:1 (1999), 51–79 | DOI | MR

[8] O. G. Smolyanov, H. V. Weizsaecker, C. R. Acad. Sci. Paris, 321:1 (1985), 103–108 | MR

[9] O. G. Smolyanov, H. V. Weizsaecker, J. Funct. Anal., 118:2 (1993), 455–476 | DOI | MR

[10] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v beskonechnomernom prostranstve, Nauka, M., 1983 | MR

[11] D. Bell, Trans. Am. Math. Soc., 290:2 (1985), 841–845 | DOI | MR

[12] L. Akkardi, O. G. Smolyanov, M. O. Smolyanova, Matem. zametki, 60:2 (1996), 288–292 | DOI | MR

[13] I. M. Gelfand, A. M. Yaglom, UMN, 11:1 (1956), 77–114 | MR | Zbl

[14] O. G. Smolyanov, E. T. Shavgulidze, Kontinualnye integraly, Izd-vo MGU, M., 1990 | MR | Zbl

[15] O. G. Smolyanov, A. Yu. Khrennikov, DAN SSSR, 281:2 (1985), 279–283 | MR | Zbl

[16] B. Simon, Functional integration and quantum physics, Acad. Press, New York, 1979 | MR

[17] V. P. Belavkin, O. G. Smolyanov, Dokl. RAN, 360:5 (1998), 588–593 | MR