Gaussian functional integrals and Gibbs equilibrium averages
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 345-352
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that Gibbs equilibrium averages of Bose-operators can be represented as path integrals over a special Gauss measure defined in the corresponding space of continuous functions. This measure arises in the Bogoliubov $T$-product approach and is non-Wiener.
@article{TMF_1999_119_2_a7,
author = {D. P. Sankovich},
title = {Gaussian functional integrals and {Gibbs} equilibrium averages},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {345--352},
publisher = {mathdoc},
volume = {119},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a7/}
}
D. P. Sankovich. Gaussian functional integrals and Gibbs equilibrium averages. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 345-352. http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a7/