Gaussian functional integrals and Gibbs equilibrium averages
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 345-352

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that Gibbs equilibrium averages of Bose-operators can be represented as path integrals over a special Gauss measure defined in the corresponding space of continuous functions. This measure arises in the Bogoliubov $T$-product approach and is non-Wiener.
@article{TMF_1999_119_2_a7,
     author = {D. P. Sankovich},
     title = {Gaussian functional integrals and {Gibbs} equilibrium averages},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {345--352},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a7/}
}
TY  - JOUR
AU  - D. P. Sankovich
TI  - Gaussian functional integrals and Gibbs equilibrium averages
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 345
EP  - 352
VL  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a7/
LA  - ru
ID  - TMF_1999_119_2_a7
ER  - 
%0 Journal Article
%A D. P. Sankovich
%T Gaussian functional integrals and Gibbs equilibrium averages
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 345-352
%V 119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a7/
%G ru
%F TMF_1999_119_2_a7
D. P. Sankovich. Gaussian functional integrals and Gibbs equilibrium averages. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 345-352. http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a7/