Gaussian functional integrals and Gibbs equilibrium averages
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 345-352
Cet article a éte moissonné depuis la source Math-Net.Ru
We show that Gibbs equilibrium averages of Bose-operators can be represented as path integrals over a special Gauss measure defined in the corresponding space of continuous functions. This measure arises in the Bogoliubov $T$-product approach and is non-Wiener.
@article{TMF_1999_119_2_a7,
author = {D. P. Sankovich},
title = {Gaussian functional integrals and {Gibbs} equilibrium averages},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {345--352},
year = {1999},
volume = {119},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a7/}
}
D. P. Sankovich. Gaussian functional integrals and Gibbs equilibrium averages. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 345-352. http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a7/
[1] F. J. Dyson, Phys. Rev., 75 (1949), 486 | DOI | MR | Zbl
[2] N. N. Bogolyubov, D. V. Shirkov, Vvedenie v teoriyu kvantovannykh polei, Nauka, M., 1973 | MR | Zbl
[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 2, Mir, M., 1978 | MR
[4] T. Kato, J. Math. Soc. Japan, 5 (1953), 208 | DOI | MR | Zbl
[5] N. N. Bogolyubov, N. N. Bogolyubov \rom(ml.\rom), Aspekty teorii polyarona, Soobscheniya OIYaI, R17-81-65, OIYaI, Dubna, 1981
[6] N. Burbaki, Integrirovanie, Gl. III–V, IX, Nauka, M., 1977 | MR
[7] F. Riss, B. Sekefalvi-Nad, Lektsii po funktsionalnomu analizu, Mir, M., 1979 | MR
[8] Yu. L. Daletskii, S. V. Fomin, Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1978 | MR