Multiparameter models for random walks in disordered lattice systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 332-344
Voir la notice de l'article provenant de la source Math-Net.Ru
Multidimensional asymptotically exactly solvable models are suggested for random walks in a stationary random lattice environment. These models differ from the well-known ones in that they involve arbitrarily many independent local random parameters per lattice site and allow for slowly decreasing intensities with increasing intersite distance. In particular, the suggested models describe the first nontrivial exactly solvable multidimensional systems with symmetrical interaction.
@article{TMF_1999_119_2_a6,
author = {V. E. Shestopal},
title = {Multiparameter models for random walks in disordered lattice systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {332--344},
publisher = {mathdoc},
volume = {119},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a6/}
}
V. E. Shestopal. Multiparameter models for random walks in disordered lattice systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 332-344. http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a6/