Smooth kinematic-type manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 264-281 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a general approach for describing different causality-type relations on smooth manifolds. The causality structure can be defined either axiomatically (by a cone in the tangent space) or by a pseudometric with the signature $(+-\cdots-)$ or $(+-\cdots-0\cdots0)$. In the latter case, the manifold acquires the structure of a fibered space with “absolute simultaneity” fibers. The smooth structure (atlas) of the manifold is directly related to its causal structure.
@article{TMF_1999_119_2_a2,
     author = {V. R. Krym},
     title = {Smooth kinematic-type manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {264--281},
     year = {1999},
     volume = {119},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a2/}
}
TY  - JOUR
AU  - V. R. Krym
TI  - Smooth kinematic-type manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 264
EP  - 281
VL  - 119
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a2/
LA  - ru
ID  - TMF_1999_119_2_a2
ER  - 
%0 Journal Article
%A V. R. Krym
%T Smooth kinematic-type manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 264-281
%V 119
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a2/
%G ru
%F TMF_1999_119_2_a2
V. R. Krym. Smooth kinematic-type manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 264-281. http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a2/

[1] T. I. Kaluza, Sitzungsber. Preuss. Akad. Wiss., 1921, 966–972

[2] V. Fock, Z. Phys., 39 (1926), 226–232 | DOI | Zbl

[3] O. Klein, Z. Phys., 37 (1926), 895–906 | DOI | Zbl

[4] Yu. B. Rumer, Issledovaniya po 5-optike, Gostekhizdat, M., 1956 | MR

[5] A. Einstein, P. Bergmann, Ann. Math., 39 (1938), 683–701 | DOI | MR | Zbl

[6] H. Busemann, Rozpr. Mat., 1967, no. 53, 1–50

[7] R. I. Pimenov, Zap. nauchn. semin. LOMI, 6, 1968, 7–496 | MR | Zbl

[8] D. Finkelstein, Phys. Today, 25:4 (1972), 51–52 ; 8, 15 | DOI

[9] V. R. Krym, Zap. nauchn. semin. POMI, 246, 1997, 152–173 | Zbl

[10] V. R. Krym, Causal structures in linear spaces, E-print gr-qc/9704016 | MR

[11] M. A. Ulanovskii, Ukr. geometr. sb., 1970, no. 7, 153–165; No 9, 96–110 | Zbl

[12] E. H. Kronheimer, R. Penrose, Proc. Cambridge Philos. Soc., 63 (1967), 481–501 | DOI | MR | Zbl

[13] R. I. Pimenov, Trudy seminara po vektornomu i tenzornomu analizu, 14 (1968), 154–173 | MR | Zbl

[14] Yu. D. Burago, V. A. Zalgaller, Vvedenie v rimanovu geometriyu, Nauka, Sankt-Peterburg, 1994 | MR | Zbl

[15] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR

[16] R. E. Gompf, J. Diff. Geom., 18:2 (1983), 317–328 | DOI | MR | Zbl