Smooth kinematic-type manifolds
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 264-281

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a general approach for describing different causality-type relations on smooth manifolds. The causality structure can be defined either axiomatically (by a cone in the tangent space) or by a pseudometric with the signature $(+-\cdots-)$ or $(+-\cdots-0\cdots0)$. In the latter case, the manifold acquires the structure of a fibered space with “absolute simultaneity” fibers. The smooth structure (atlas) of the manifold is directly related to its causal structure.
@article{TMF_1999_119_2_a2,
     author = {V. R. Krym},
     title = {Smooth kinematic-type manifolds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {264--281},
     publisher = {mathdoc},
     volume = {119},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a2/}
}
TY  - JOUR
AU  - V. R. Krym
TI  - Smooth kinematic-type manifolds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 264
EP  - 281
VL  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a2/
LA  - ru
ID  - TMF_1999_119_2_a2
ER  - 
%0 Journal Article
%A V. R. Krym
%T Smooth kinematic-type manifolds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 264-281
%V 119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a2/
%G ru
%F TMF_1999_119_2_a2
V. R. Krym. Smooth kinematic-type manifolds. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 264-281. http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a2/