On the Riemann–Hilbert approach to asymptotic analysis of the correlation functions of the quantum nonlinear Schrödinger equation: Interacting fermion case
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 179-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the local field dynamic temperature correlation function of the quantum nonlinear Schrödinger equation with a finite coupling constant. This correlation function admits a Fredholm determinant representation. The related operator-valued Riemann–Hilbert problem is used to analyze the leading term of the large time and distance asymptotic expansion of the correlation function.
@article{TMF_1999_119_2_a0,
     author = {A. R. Its and N. A. Slavnov},
     title = {On the {Riemann{\textendash}Hilbert} approach to asymptotic analysis of the correlation functions of the quantum nonlinear {Schr\"odinger} equation: {Interacting} fermion case},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {179--248},
     year = {1999},
     volume = {119},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a0/}
}
TY  - JOUR
AU  - A. R. Its
AU  - N. A. Slavnov
TI  - On the Riemann–Hilbert approach to asymptotic analysis of the correlation functions of the quantum nonlinear Schrödinger equation: Interacting fermion case
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 179
EP  - 248
VL  - 119
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a0/
LA  - ru
ID  - TMF_1999_119_2_a0
ER  - 
%0 Journal Article
%A A. R. Its
%A N. A. Slavnov
%T On the Riemann–Hilbert approach to asymptotic analysis of the correlation functions of the quantum nonlinear Schrödinger equation: Interacting fermion case
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 179-248
%V 119
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a0/
%G ru
%F TMF_1999_119_2_a0
A. R. Its; N. A. Slavnov. On the Riemann–Hilbert approach to asymptotic analysis of the correlation functions of the quantum nonlinear Schrödinger equation: Interacting fermion case. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 2, pp. 179-248. http://geodesic.mathdoc.fr/item/TMF_1999_119_2_a0/

[1] T. Kojima, V. E. Korepin, N. A. Slavnov, Commun. Math. Phys., 188 (1997), 657 | DOI | MR | Zbl

[2] T. Kojima, V. E. Korepin, N. A. Slavnov, Commun. Math. Phys., 189 (1997), 709 | DOI | MR | Zbl

[3] V. E. Korepin, N. A. Slavnov, J. Phys. A, 30 (1997), 8241 | DOI | MR | Zbl

[4] N. A. Slavnov, Zap. nauchn. semin. POMI, 251, 1998, 80 ; E-print solv-int/9810016

[5] V. E. Korepin, N. A. Slavnov, J. Phys. A: Math. Gen., 30 (1997), 8623 | DOI | MR | Zbl

[6] C. N. Yang, C. P. Yang, J. Math. Phys., 10 (1969), 1115 | DOI | MR | Zbl

[7] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, Nucl. Phys. B, 241 (1984), 333 | DOI | MR | Zbl

[8] V. E. Korepin, N. M. Bogoliubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Univ. Press, Cambridge, 1993 | MR | Zbl

[9] A. Lenard, J. Math. Phys., 7 (1966), 1268 | DOI | MR

[10] V. E. Korepin, N. A. Slavnov, Commun. Math. Phys., 129 (1990), 103 | DOI | MR | Zbl

[11] V. E. Korepin, N. A. Slavnov, Commun. Math. Phys., 136 (1991), 633 | DOI | MR | Zbl

[12] E. Barouch, B. M. McCoy, T. T. Wu, Phys. Rev. Lett., 31 (1973), 1409 | DOI

[13] C. A. Tracy, B. M. McCoy, Phys. Rev. Lett., 31 (1973), 1500 | DOI

[14] B. M. McCoy, C. A. Tracy, T. T. Wu, J. Math. Phys., 18:5 (1977), 1058 | DOI | MR | Zbl

[15] A. Jimbo, T. Miwa, Y. Mori, M. Sato, Physica D, 1 (1980), 80 | DOI | MR | Zbl

[16] B. M. McCoy, J. H. H. Perk, R. E. Shrock, Nucl. Phys. B, 220:[FS8] (1983), 35 | DOI | MR

[17] B. M. McCoy, J. H. H. Perk, R. E. Shrock, Nucl. Phys. B, 220 (1983), 269 | DOI | MR

[18] A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, Int. J Mod. Phys. B, 4 (1990), 1003 | DOI | MR | Zbl

[19] A. Berkovich, J. Phys. A, 24 (1991), 1543 | DOI | MR

[20] A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, Phys. Rev. Lett., 70:11 (1993), 1704 | DOI

[21] A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, “The quantum correlation function as the $\tau$ function of classical differential equations”, Important Developments in Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer-Verlag, Berlin, 1993, 407 | DOI | MR | Zbl

[22] A. Leclair, F. Lesage, S. Sachdev, H. Saleur, Nucl. Phys. B, 482 (1996), 579 | DOI | MR | Zbl

[23] H. G. Vaidya, C. A. Tracy, Phys. Lett. A, 68 (1978), 378 | DOI | MR

[24] H. G. Vaidya, C. A. Tracy, J. Math. Phys., 20 (1979), 2291 | DOI | MR

[25] B. M. McCoy, Sh. Tang, Physica D, 19 (1986), 42 ; 20, 187 | DOI | MR | Zbl | DOI | MR | Zbl

[26] E. L. Basor, C. A. Tracy, Asymptotics of a tau-function and Toeplitz determinants with singular generating function, Preprint RIMS-810, Kyoto Univ., Kyoto, 1991 | MR

[27] C. A. Tracy, Commun. Math. Phys., 142 (1991), 297 | DOI | MR | Zbl

[28] A. R. Its, A. G. Izergin, V. E. Korepin, Phys. Lett. A, 141 (1989), 121 ; Commun. Math. Phys., 129 (1990), 205 ; 130, 471 ; Nucl. Phys. B, 348 (1991), 757 ; Physica D, 53 (1991), 187 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | DOI | MR | Zbl

[29] A. R. Its, A. G. Izergin, V. E. Korepin, G. G. Varzugin, Physica D, 54 (1992), 351 | DOI | MR | Zbl

[30] P. Deift, X. Zhou, “Long-time asymptotics for the autocorrelation function of the transverse Ising chain at the critical magnetic field”, Singular Limits of Dispersive Waves, NATO ASI Series B. Physics, 320, eds. N. M. Ercolani, I. R. Gabitov, C. D. Levermore, D. Serre, Plenum Press, New York, 1994 | MR | Zbl

[31] C. A. Tracy, H. Widom, Commun. Math. Phys., 163 (1994), 33 | DOI | MR | Zbl

[32] A. B. Shabat, Funkts. analiz i ego prilozh., 9:3 (1975), 75 | MR | Zbl

[33] S. V. Manakov, ZhETF, 65:4 (1973), 1392

[34] M. J. Ablowitz, A. C. Newell, J. Math. Phys., 14 (1973), 1277 | DOI | MR | Zbl

[35] V. E. Zakharov, S. V. Manakov, ZhETF, 71:1 (1976), 203

[36] M. J. Ablowitz, H. Segur, Stud. Appl. Math., 57:1 (1977), 13 | DOI | MR | Zbl

[37] P. Deift, X. Zhou, Ann. Math., 137 (1995), 295 | DOI | MR

[38] P. A. Deift, A. R. Its, X. Zhou, “Long-time asymptotics for integrable nonlinear wave equations”, Important Developments in Soliton Theory, eds. A. S. Fokas, V. E. Zakharov, Springer-Verlag, Berlin, 1993, 181 | DOI | MR | Zbl

[39] P. Deift, X. Zhou, Long-Time Behavior of the Non-Focusing Nonlinear Schrödinger Equation – a Case Study, The University of Tokyo, Tokyo, 1994 | MR | Zbl

[40] I. Ts. Gokhberg, N. Ya. Krupnik, Vvedenie v teoriyu odnomernykh singulyarnykh operatorov, Shtiintsa, Kishinev, 1973 | MR

[41] A. R. Its, DAN SSSR, 261:1 (1981), 14 | MR | Zbl

[42] P. A. Deift, A. R. Its, X. Zhou, Ann. Math., 146 (1997), 149 | DOI | MR | Zbl

[43] P. M. Bleher, A. R. Its, Semiclassical asymptotics of orthogonal polynomials, Riemann–Hilbert problem, and universality in the matrix model, IUPUI preprint 97-2, IUPUI, Indiana, 1997 | MR

[44] P. A. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, Intern. Math. Res. Notices, 16 (1997), 759 | DOI | MR | Zbl

[45] H. Frahm, A. R. Its, V. E. Korepin, “An operator-valued Riemann–Hilbert problem associated with the XXX model”, Symmetries and Integrability of Difference Equations, CRM Proc. Lect. Notes, 9, eds. D. Levi, L. Vinet, and P. Winternitz, AMS, Providence, RI, 1996, 133 ; IUPUI preprint 95-6, IUPUI, Indiana, 1995 | DOI | MR

[46] V. E. Korepin, Commun. Math Phys., 113 (1987), 177 | DOI | MR | Zbl

[47] A. R. Its, V. E. Korepin, A. Waldron, “Probability of phase separation for the Bose gas with delta interaction”, Statphys 19, Proceedings of 19 IUPAP International Conference on Statistical Physics, ed. B.-L. Hao, World Scientific, Singapore, 1996, 101 | MR

[48] E. H. Lieb, W. Liniger, Phys. Rev., 130 (1963), 1605 | DOI | MR | Zbl

[49] H. Bateman, A. Erdélyi, Higher Transcendental Functions, Mc Graw-Hill Book Company, NY–Toronto–London; Г. Бейтмен, А. Эрдейи, Высшие трансцендентные функции. Функции Бесселя, функции параболического цилиндра, ортогональные многочлены, Наука, М., 1966 | MR

[50] M. J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 ; М. Абловиц, Х. Сигур, Солитоны и метод обратной задачи, Мир, М., 1987 | MR | Zbl | MR

[51] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Univ. Press, Cambridge, 1927 ; Э. Т. Уиттекер, Дж. Н. Ватсон, Курс современного анализа, В 2-х частях, Физматгиз, М., 1962 | MR | Zbl