A $2+1$-dimensional fermion in the Coulomb and magnetic field backgrounds
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 105-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the problem of a two-dimensional hydrogen-like atom in a magnetic field background, we construct quasi-classical solutions and the energy spectrum of the Dirac equation in a strong Coulomb field and in a weak constant homogeneous magnetic field in $2+1$ dimensions. We find some “exact” solutions of the Dirac and Pauli equations describing the “spinless” fermions in strong Coulomb fields and in homogeneous magnetic fields in $2+1$ dimensions.
@article{TMF_1999_119_1_a8,
     author = {V. R. Khalilov},
     title = {A $2+1$-dimensional fermion in the {Coulomb} and magnetic field backgrounds},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {105--118},
     year = {1999},
     volume = {119},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a8/}
}
TY  - JOUR
AU  - V. R. Khalilov
TI  - A $2+1$-dimensional fermion in the Coulomb and magnetic field backgrounds
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 105
EP  - 118
VL  - 119
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a8/
LA  - ru
ID  - TMF_1999_119_1_a8
ER  - 
%0 Journal Article
%A V. R. Khalilov
%T A $2+1$-dimensional fermion in the Coulomb and magnetic field backgrounds
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 105-118
%V 119
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a8/
%G ru
%F TMF_1999_119_1_a8
V. R. Khalilov. A $2+1$-dimensional fermion in the Coulomb and magnetic field backgrounds. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 105-118. http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a8/

[1] R. E. Prange, S. M. Girvin (eds.), The Quantum Hall Effect, $2^{\mathrm{nd}}$ ed., Springer-Verlag, New York, 1990 | MR

[2] F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore, 1990 | MR | Zbl

[3] A. M. J. Schakel, Phys. Rev. D, 43 (1991), 1428 ; A. Neagu, A. M. J. Schakel, Phys. Rev. D, 48 (1993), 1785 | DOI | DOI

[4] A. M. J. Schakel, G. W. Semenoff, Phys. Rev. Lett., 66 (1991), 2653 | DOI

[5] V. G. Bagrov, D. M. Gitman, I. M. Ternov, V. R. Khalilov, Tochnye resheniya relyativistskikh volnovykh uravnenii, Nauka, Novosibirsk, 1984

[6] B. A. Lysov, O. F. Dorofeyev, I. M. Ternov, Nucl. Instr. Methods. A, 308 (1991), 115 | DOI

[7] M. Taut, J. Phys. Math. Gen. A, 28 (1995), 2081 | DOI | MR | Zbl

[8] V. R. Khalilov, C. L. Ho, Mod. Phys. Lett. A, 13 (1998), 615 | DOI

[9] I. M. Ternov, V. V. Mikhailin, V. R. Khalilov, Synchrotron Radiation and Its Applications, Harwood Academic Pub., Amsterdam, 1985

[10] V. B. Berestetskii, E. M. Lifshits, L. P. Pitaevskii, Kvantovaya elektrodinamika, Nauka, M., 1980 | MR

[11] A. A. Sokolov, I. M. Ternov, Relyativistskii elektron, Nauka, M., 1974

[12] Ya. B. Zeldovich, V. S. Popov, UFN, 105 (1971), 403 | DOI | MR

[13] A. B. Migdal, Fermiony i bozony v silnykh polyakh, Nauka, M., 1978

[14] A. A. Grib, S. G. Mamaev, V. M. Mostepanenko, Vakuumnye kvantovye effekty v silnykh polyakh, Energoatomizdat, M., 1988

[15] I. Pomeranchuk, Ya. Smorodinsky, J. Phys. USSR, 9 (1945), 97

[16] V. M. Villalba, R. Pino, Analytic Solution of a Relativistic Two-dimensional Hydrogen-like Atom in a Constant Magnetic Field, E-print cond-mat/9712044

[17] F. Olver, Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978 | MR

[18] P. V. Elyutin, V. D. Krivchenkov, Kvantovaya mekhanika, Nauka, M., 1976

[19] E. Witten, Nucl. Phys. B, 188 (1981), 513 | DOI | MR | Zbl

[20] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR