On the quasi-classical limit of the quadratic susceptibility
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 93-104
Voir la notice de l'article provenant de la source Math-Net.Ru
For autonomous Hamiltonian systems, the quasi-classical limit ($\hbar\to0$) of the quadratic susceptibility to an external harmonic field is considered. To calculate this limit, the coordinate matrix elements and the quantum transition frequencies are expanded in powers of $\hbar$ up to terms of order $\hbar^2$ based on symmetry relations and sum rules. The quasi-classical limit of the quadratic susceptibility is calculated in terms of classical parameters and can be used to determine the response functions of chaotic systems.
@article{TMF_1999_119_1_a7,
author = {P. V. Elyutin and O. V. Smirnova},
title = {On the quasi-classical limit of the quadratic susceptibility},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {93--104},
publisher = {mathdoc},
volume = {119},
number = {1},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/}
}
TY - JOUR AU - P. V. Elyutin AU - O. V. Smirnova TI - On the quasi-classical limit of the quadratic susceptibility JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 93 EP - 104 VL - 119 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/ LA - ru ID - TMF_1999_119_1_a7 ER -
P. V. Elyutin; O. V. Smirnova. On the quasi-classical limit of the quadratic susceptibility. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/