On the quasi-classical limit of the quadratic susceptibility
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 93-104

Voir la notice de l'article provenant de la source Math-Net.Ru

For autonomous Hamiltonian systems, the quasi-classical limit ($\hbar\to0$) of the quadratic susceptibility to an external harmonic field is considered. To calculate this limit, the coordinate matrix elements and the quantum transition frequencies are expanded in powers of $\hbar$ up to terms of order $\hbar^2$ based on symmetry relations and sum rules. The quasi-classical limit of the quadratic susceptibility is calculated in terms of classical parameters and can be used to determine the response functions of chaotic systems.
@article{TMF_1999_119_1_a7,
     author = {P. V. Elyutin and O. V. Smirnova},
     title = {On the quasi-classical limit of the quadratic susceptibility},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {93--104},
     publisher = {mathdoc},
     volume = {119},
     number = {1},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/}
}
TY  - JOUR
AU  - P. V. Elyutin
AU  - O. V. Smirnova
TI  - On the quasi-classical limit of the quadratic susceptibility
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 93
EP  - 104
VL  - 119
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/
LA  - ru
ID  - TMF_1999_119_1_a7
ER  - 
%0 Journal Article
%A P. V. Elyutin
%A O. V. Smirnova
%T On the quasi-classical limit of the quadratic susceptibility
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 93-104
%V 119
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/
%G ru
%F TMF_1999_119_1_a7
P. V. Elyutin; O. V. Smirnova. On the quasi-classical limit of the quadratic susceptibility. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/