On the quasi-classical limit of the quadratic susceptibility
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 93-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For autonomous Hamiltonian systems, the quasi-classical limit ($\hbar\to0$) of the quadratic susceptibility to an external harmonic field is considered. To calculate this limit, the coordinate matrix elements and the quantum transition frequencies are expanded in powers of $\hbar$ up to terms of order $\hbar^2$ based on symmetry relations and sum rules. The quasi-classical limit of the quadratic susceptibility is calculated in terms of classical parameters and can be used to determine the response functions of chaotic systems.
@article{TMF_1999_119_1_a7,
     author = {P. V. Elyutin and O. V. Smirnova},
     title = {On the quasi-classical limit of the quadratic susceptibility},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {93--104},
     year = {1999},
     volume = {119},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/}
}
TY  - JOUR
AU  - P. V. Elyutin
AU  - O. V. Smirnova
TI  - On the quasi-classical limit of the quadratic susceptibility
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 93
EP  - 104
VL  - 119
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/
LA  - ru
ID  - TMF_1999_119_1_a7
ER  - 
%0 Journal Article
%A P. V. Elyutin
%A O. V. Smirnova
%T On the quasi-classical limit of the quadratic susceptibility
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 93-104
%V 119
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/
%G ru
%F TMF_1999_119_1_a7
P. V. Elyutin; O. V. Smirnova. On the quasi-classical limit of the quadratic susceptibility. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 93-104. http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a7/

[1] B. A. Vvedenskii, B. M. Vul (red.), Fizicheskii entsiklopedicheskii slovar, T. 4, Sov. entsiklopediya, M., 1965

[2] N. P. Klepikov (red.), Kvantovaya mekhanika. Terminologiya, Sborniki rekomenduemykh terminov, 104, Nauka, M., 1985

[3] A. M. Prokhorov (red.), Fizicheskaya entsiklopediya, T. 4, Nauchn. izd-vo “Bolshaya Rossiiskaya entsiklopediya”, M., 1994, S. 599

[4] A. B. Migdal, Kachestvennye metody v kvantovoi teorii, Nauka, M., 1975 | MR

[5] D. N. Klyshko, Fizicheskie osnovy kvantovoi elektroniki, Nauka, M., 1986 | MR

[6] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika, Chast 1. Izd. 4-e, Nauka, M., 1995 | MR | Zbl

[7] A. V. Gaponov, M. I. Petelin, V. K. Yulpatov, Izv. vuzov. Radiofizika, X:9–10 (1967), 1414

[8] E. S. Medvedev, TMF, 90:2 (1992), 218

[9] N. Blombergen, Nelineinaya optika, Mir, M., 1965

[10] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR

[11] V. P. Maslov, UMN, 15:4(94) (1960), 220

[12] M. V. Fedoryuk, Matem. sb., 68(110) (1965), 81

[13] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR

[14] J. J. Morehead, Phys. Rev. A, 53 (1996), 1285 | DOI

[15] G. Veil, Kvantovaya mekhanika i teoriya grupp, Nauka, M., 1986 | MR

[16] L. D. Landau, E. M. Lifshits, Mekhanika, Nauka, M., 1988 | MR

[17] A. S. Davydov, Kvantovaya mekhanika, Nauka, M., 1973 | MR

[18] G. A. Bete, Kvantovaya mekhanika, Mir, M., 1965 | MR

[19] S. Scandolo, F. Bassani, Phys. Rev. B, 51 (1995), 6925 | DOI

[20] A. Likhtenberg, M. Liberman, Regulyarnaya i stokhasticheskaya dinamika, Mir, M., 1984

[21] P. V. Elyutin, J. Shan, Phys. Rev. Lett., 77 (1996), 5043 | DOI

[22] M. Feingold, A. Peres, Phys. Rev. A, 34 (1986), 591 | DOI | MR

[23] M. Wilkinson, J. Phys. A, 20 (1987), 2415 | DOI | MR

[24] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR