Equations of motion and conserved quantities in non-Abelian discrete integrable models
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 34-46
Voir la notice de l'article provenant de la source Math-Net.Ru
Conserved quantities for the Hirota bilinear difference equation, which is satisfied by eigenvalues of the transfer matrix, are studied. The transfer-matrix eigenvalue combinations that are integrals of motion for discrete integrable models, which correspond to $A_{k-1}$ algebras and satisfy zero or quasi-periodic boundary conditions, are found. Discrete equations of motion for a non-Abelian generalization of the Liouville model and the discrete analogue of the Tsitseiko equation are obtained.
@article{TMF_1999_119_1_a2,
author = {V. A. Verbus and A. P. Protogenov},
title = {Equations of motion and conserved quantities in {non-Abelian} discrete integrable models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {34--46},
publisher = {mathdoc},
volume = {119},
number = {1},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a2/}
}
TY - JOUR AU - V. A. Verbus AU - A. P. Protogenov TI - Equations of motion and conserved quantities in non-Abelian discrete integrable models JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 34 EP - 46 VL - 119 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a2/ LA - ru ID - TMF_1999_119_1_a2 ER -
%0 Journal Article %A V. A. Verbus %A A. P. Protogenov %T Equations of motion and conserved quantities in non-Abelian discrete integrable models %J Teoretičeskaâ i matematičeskaâ fizika %D 1999 %P 34-46 %V 119 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a2/ %G ru %F TMF_1999_119_1_a2
V. A. Verbus; A. P. Protogenov. Equations of motion and conserved quantities in non-Abelian discrete integrable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 34-46. http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a2/