Classical statistics of one-component systems with model potentials
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 167-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a functional integral representation of the configuration integral for one-component classical systems with two-particle potentials admitting the Fourier expansion. In this representation, the integrand is factored with respect to the atomic coordinates. The “monoatomic” factors are universal (i.e., independent of the explicit form of the interatomic potential). We obtain a sufficient condition for spontaneous symmetry breaking in continuous classical statistics models. We investigate the case of model potentials with a nonnegative Fourier transform. The functional integral for this class of potentials is calculated using the saddle-point method. We prove the existence of phase transitions for some model potentials.
@article{TMF_1999_119_1_a12,
     author = {A. Yu. Zakharov and I. K. Loktionov},
     title = {Classical statistics of one-component systems with model potentials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {167--176},
     year = {1999},
     volume = {119},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a12/}
}
TY  - JOUR
AU  - A. Yu. Zakharov
AU  - I. K. Loktionov
TI  - Classical statistics of one-component systems with model potentials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 167
EP  - 176
VL  - 119
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a12/
LA  - ru
ID  - TMF_1999_119_1_a12
ER  - 
%0 Journal Article
%A A. Yu. Zakharov
%A I. K. Loktionov
%T Classical statistics of one-component systems with model potentials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 167-176
%V 119
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a12/
%G ru
%F TMF_1999_119_1_a12
A. Yu. Zakharov; I. K. Loktionov. Classical statistics of one-component systems with model potentials. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 167-176. http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a12/

[1] A. Yu. Zakharov, Phys. Lett. A, 147:8/9 (1990), 442 | DOI | MR

[2] D. J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena, McGraw-Hill, New York, 1978 | MR

[3] A. A. Vlasov, Teoriya mnogikh chastits, GITTL, M., 1950

[4] V. L. Ginzburg, L. D. Landau, M. A. Leontovich, V. A. Fok, ZhETF, 16:3 (1946), 246

[5] S. V. Tyablikov, ZhETF, 17:5 (1947), 386

[6] I. P. Bazarov, Statisticheskaya teoriya kristallicheskogo sostoyaniya, MGU, M., 1972

[7] I. P. Bazarov, E. V. Gevorkyan, Statisticheskaya teoriya tverdykh i zhidkikh kristallov, MGU, M., 1983

[8] A. Yu. Zakharov, I. K. Loktionov, Ya. I. Granovskii, TVT, 35:3 (1997), 367

[9] D. N. Zubarev, DAN SSSR, 95:4 (1954), 757 | MR | Zbl

[10] I. R. Yukhnovskii, M. F. Golovko, Statisticheskaya teoriya ravnovesnykh klassicheskikh sistem, Naukova dumka, Kiev, 1980 | MR

[11] I. R. Yukhnovskii, Teoriya fazovykh perekhodov vtorogo roda. Metod kollektivnykh peremennykh, Naukova dumka, Kiev, 1985 | MR

[12] A. Yu. Zakharov, S. V. Terekhov, “Obobschennaya reshetochnaya model fazovykh ravnovesii v mnogokomponentnykh sistemakh”, Matematicheskie zadachi khimicheskoi termodinamiki, ed. G. A. Kokovin, Nauka, Novosibirsk, 1985 | Zbl

[13] G. Stenli, Fazovye perekhody i kriticheskie yavleniya, Mir, M., 1973