Fermi–Walker transport and the Weyl connection
Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 136-141
Cet article a éte moissonné depuis la source Math-Net.Ru
We derive equations relating the Fermi–Walker and the congruent Weyl transports. Using these equations, we show that a non-Abelian gauge field can result in the Thomas precession of a gyroscope. We find solutions to the equations for such a non-Abelian gauge field.
@article{TMF_1999_119_1_a10,
author = {B. M. Barbashov and A. B. Pestov},
title = {Fermi{\textendash}Walker transport and the {Weyl} connection},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {136--141},
year = {1999},
volume = {119},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a10/}
}
B. M. Barbashov; A. B. Pestov. Fermi–Walker transport and the Weyl connection. Teoretičeskaâ i matematičeskaâ fizika, Tome 119 (1999) no. 1, pp. 136-141. http://geodesic.mathdoc.fr/item/TMF_1999_119_1_a10/
[1] B. M. Barbashov, A. B. Pestov, TMF, 104 (1995), 429 | MR | Zbl
[2] H. Weyl, Space–Time–Matter, Dover Publications, New York, 1922
[3] B. M. Barbashov, A. B. Pestov, TMF, 113 (1997), 112 | DOI | MR | Zbl
[4] A. P. Norden, Prostranstva affinnoi svyaznosti, Nauka, M., 1978 | MR | Zbl
[5] Dzh. Sing, Obschaya teoriya otnositelnosti, IL, M., 1963
[6] Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, Mir, M., 1977
[7] S. Veinberg, Gravitatsiya i kosmologiya, Mir, M., 1975
[8] Kenji Hayashi, Takeshi Shirafuji, Phys. Rev. D, 19 (1979), 3524 | DOI | MR | Zbl
[9] L. D. Landau, E. M. Lifshits, Teoriya polya, Nauka, M., 1967 | MR | Zbl
[10] L. Raider, Kvantovaya teoriya polya, Mir, M., 1987 | MR