On the two-scale method for the problem of perturbed one-frequency oscillations
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 383-389 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the asymptotic behavior with respect to time of the solution to the initial problem for an ordinary differential equation with a small parameter $\varepsilon$. We construct an asymptotic approximation that is valid for time values $t\gg\varepsilon$ up to any order in $\varepsilon$.
@article{TMF_1999_118_3_a7,
     author = {A. M. Il'in},
     title = {On the two-scale method for the problem of perturbed one-frequency oscillations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {383--389},
     year = {1999},
     volume = {118},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a7/}
}
TY  - JOUR
AU  - A. M. Il'in
TI  - On the two-scale method for the problem of perturbed one-frequency oscillations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 383
EP  - 389
VL  - 118
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a7/
LA  - ru
ID  - TMF_1999_118_3_a7
ER  - 
%0 Journal Article
%A A. M. Il'in
%T On the two-scale method for the problem of perturbed one-frequency oscillations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 383-389
%V 118
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a7/
%G ru
%F TMF_1999_118_3_a7
A. M. Il'in. On the two-scale method for the problem of perturbed one-frequency oscillations. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 383-389. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a7/

[1] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Izd-vo AN SSSR, M., 1963 | MR

[2] E. A. Grebenikov, Metod usredneniya v prikladnykh zadachakh, Nauka, M., 1986 | MR

[3] Yu. A. Mitropolskii, G. P. Khoma, Matematicheskoe obosnovanie asimptoticheskikh metodov nelineinoi mekhaniki, Naukova dumka, Kiev, 1983 | MR

[4] M. M. Khapaev, Asimptoticheskie metody i ustoichivost v teorii nelineinykh kolebanii, Vysshaya shkola, M., 1988 | MR

[5] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, “Metod vozmuschenii v teorii rasprostraneniya voln”, Teoriya rasprostraneniya voln v neodnorodnykh i nelineinykh sredakh, eds. E. I. Nefedov, O. E. Shushkanov, Izd-vo IRE AN SSSR, M., 1979, 28 | MR

[6] A. Naife, Metody vozmuschenii, Mir, M., 1976 | MR

[7] R. P. Kuzmina, UMN, 52:1 (1997), 231 | DOI | MR | Zbl

[8] V. V. Laricheva, Dokl. AN SSSR, 220:4 (1975), 775 | MR | Zbl

[9] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 3, VINITI, M., 1985, 5 | MR

[10] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IIL, M., 1958