Reflectionless sine-Gordon potentials with an infinite spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 337-346
Voir la notice de l'article provenant de la source Math-Net.Ru
For the sine-Gordon $L$-operator, we use dressing chains to construct reflectionless potentials that are self-similar with respect to Darboux transformations. These potentials have an infinite spectrum arranged in a geometric progression. We use numerical methods to show that these potentials have a localized form with modulated tails.
@article{TMF_1999_118_3_a2,
author = {A. B. Borisov and S. A. Zykov},
title = {Reflectionless {sine-Gordon} potentials with an infinite spectrum},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {337--346},
publisher = {mathdoc},
volume = {118},
number = {3},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a2/}
}
TY - JOUR AU - A. B. Borisov AU - S. A. Zykov TI - Reflectionless sine-Gordon potentials with an infinite spectrum JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 337 EP - 346 VL - 118 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a2/ LA - ru ID - TMF_1999_118_3_a2 ER -
A. B. Borisov; S. A. Zykov. Reflectionless sine-Gordon potentials with an infinite spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 337-346. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a2/