Reflectionless sine-Gordon potentials with an infinite spectrum
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 337-346

Voir la notice de l'article provenant de la source Math-Net.Ru

For the sine-Gordon $L$-operator, we use dressing chains to construct reflectionless potentials that are self-similar with respect to Darboux transformations. These potentials have an infinite spectrum arranged in a geometric progression. We use numerical methods to show that these potentials have a localized form with modulated tails.
@article{TMF_1999_118_3_a2,
     author = {A. B. Borisov and S. A. Zykov},
     title = {Reflectionless {sine-Gordon} potentials with an infinite spectrum},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {337--346},
     publisher = {mathdoc},
     volume = {118},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a2/}
}
TY  - JOUR
AU  - A. B. Borisov
AU  - S. A. Zykov
TI  - Reflectionless sine-Gordon potentials with an infinite spectrum
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 337
EP  - 346
VL  - 118
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a2/
LA  - ru
ID  - TMF_1999_118_3_a2
ER  - 
%0 Journal Article
%A A. B. Borisov
%A S. A. Zykov
%T Reflectionless sine-Gordon potentials with an infinite spectrum
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 337-346
%V 118
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a2/
%G ru
%F TMF_1999_118_3_a2
A. B. Borisov; S. A. Zykov. Reflectionless sine-Gordon potentials with an infinite spectrum. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 337-346. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a2/