A three-dimensional quantum integrable mapping
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 479-487 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive a three-dimensional integrable mapping that gives the $R$-matrix of the Zamolodchikov model in the cyclic representation limit. We construct the discrete-time evolution generated by this mapping and derive a generating function for the integrals of motion.
@article{TMF_1999_118_3_a18,
     author = {S. M. Sergeev},
     title = {A three-dimensional quantum integrable mapping},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {479--487},
     year = {1999},
     volume = {118},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a18/}
}
TY  - JOUR
AU  - S. M. Sergeev
TI  - A three-dimensional quantum integrable mapping
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 479
EP  - 487
VL  - 118
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a18/
LA  - ru
ID  - TMF_1999_118_3_a18
ER  - 
%0 Journal Article
%A S. M. Sergeev
%T A three-dimensional quantum integrable mapping
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 479-487
%V 118
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a18/
%G ru
%F TMF_1999_118_3_a18
S. M. Sergeev. A three-dimensional quantum integrable mapping. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 479-487. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a18/

[1] J.-M. Maillet, F. W. Nijhoff, “Multidimensional lattice integrability and the simplex equations”, Proceedings of the Como Conference on Nonlinear Evolution Equations: Integrability and Spectral Methods, eds. A. Degasperis, A. P. Fordy, M. Lakshmanan, Manchester University Press, Manchester, 1990, 537–548

[2] J.-M. Maillet, F. W. Nijhoff, Phys. Lett. B, 224 (1989), 389–396 | DOI | MR

[3] J.-M. Maillet, Nucl. Phys. B (Proc. Suppl.), 18 (1990), 212–241 | DOI | MR

[4] S. M. Sergeev, Lett. Math. Phys., 45:2 (1998), 113–119 | DOI | MR | Zbl

[5] S. M. Sergeev, On a two dimensional system associated with the complex of the solutions of the tetrahedron equation, E-print solv-int/9709013 | MR

[6] S. M. Sergeev, $3D$ symplectic map, E-print solv-int/9802012 | MR

[7] I. G. Korepanov, S. M. Sergeev, Eigenvector and eigenvalue problem for $3d$ bosonic model, E-print solv-int/9802014

[8] L. Faddeev, A. Yu. Volkov, Lett. Math. Phys., 32 (1994), 125–135 | DOI | MR | Zbl

[9] L. D. Faddeev, A. Yu. Volkov, Algebraic quantization of integrable models in discrete space-time, , 1997 E-print hep-th/9710039 | MR

[10] R. M. Kashaev, N. Yu. Reshetikhin, Commun. Math. Phys., 188 (1997), 251–266 | DOI | MR | Zbl

[11] L. D. Faddeev, R. M. Kashaev, Mod. Phys. Lett. A, 9:5 (1994), 427–434 | DOI | MR | Zbl

[12] V. V. Mangazeev, S. M. Sergeev, Yu. G. Stroganov, J. Stat. Phys., 82:1/2 (1996), 31–49 | DOI | MR | Zbl

[13] S. M. Sergeev, “Operator solutions of simplex equations”, Proc. of the 10 International Conference “Problems of Quantum Field Theory” (Alushta, 13–18 May, 1996), JINR, Dubna, 1997, 154 | MR

[14] J.-M. Maillard, S. M. Sergeev, Phys. Lett. B, 405 (1997), 55–63 | DOI | MR