An extension of the Hirota bilinear difference equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 467-478 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An extension of the Hirota bilinear difference equation to a multilinear, multidimensional lattice space is discussed. This extension admits linear Bäcklund transformations. A preliminary result on solutions is presented in the case of trilinear equations.
@article{TMF_1999_118_3_a17,
     author = {S. Saito},
     title = {An extension of the {Hirota} bilinear difference equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {467--478},
     year = {1999},
     volume = {118},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a17/}
}
TY  - JOUR
AU  - S. Saito
TI  - An extension of the Hirota bilinear difference equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 467
EP  - 478
VL  - 118
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a17/
LA  - ru
ID  - TMF_1999_118_3_a17
ER  - 
%0 Journal Article
%A S. Saito
%T An extension of the Hirota bilinear difference equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 467-478
%V 118
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a17/
%G ru
%F TMF_1999_118_3_a17
S. Saito. An extension of the Hirota bilinear difference equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 467-478. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a17/

[1] R. Hirota, J. Phys. Soc. Japan, 50 (1981), 3785 | DOI | MR

[2] T. Miwa, Proc. Jap. Acad. A, 58 (1982), 9 | DOI | MR | Zbl

[3] J. D. Fay, Theta Functions on Riemann Surfaces, Springer, Berlin–Heidelberg–New York, 1973 | MR | Zbl

[4] A. Doliwa, Phys. Lett. A, 234 (1997), 187 ; 192 ; A. Doliwa, P. M. Santini, M. Manas, Transformations of quadrilateral lattices, ; A. Doliwa, M. Manas, L. M. Alonso, E. Medina, P. M. Santini, Charged free fermions, vertex operators and classical theory of conjugate nets, E-print solv-int/9712017E-print solv-int/9803015 | DOI | MR | Zbl

[5] S. Saito, Phys. Rev. Lett., 59 (1987), 1798 | DOI | MR

[6] I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin, Commun. Math. Phys., 188 (1996), 267 | DOI | MR

[7] S. Saito, N. Saitoh, H. Konuma, K. Yoshida, J. Phys. A, 30 (1997), 6951 | DOI | MR | Zbl

[8] R. M. Kashaev, I. G. Korepanov, S. M. Sergeev, Functional Tetrahedron Equation, E-print solv-int/9801015

[9] N. Shinzawa, S. Saito, J. Phys. A, 31 (1998), 4533 | DOI | MR | Zbl

[10] J. Matsukidaira, J. Satsuma, W. Strampp, Phys. Lett. A, 147 (1990), 467 ; B. Grammaticos, A. Ramani, J. Hietarinta, Phys. Lett. A, 190 (1994), 65 ; J. Hietarinta, B. Grammaticos, A. Ramani, “Integrable Trilinear PDE's”, NEEDS '94', eds. V. G. Makhankov et al., World Scientific, Singapore, 1995, 54 ; Y. Billig, G. Misiolek, Exact Solutions of Trilinear Hirota Equations, Nortre Dame Univ. preprint | DOI | MR | DOI | MR | MR | Zbl

[11] S. Saito, N. Saitoh, J. Math. Phys., 28 (1987), 1052 | DOI | MR | Zbl

[12] N. Shinzawa, An extension of discrete integrable systems to higher dimensions, Master thesis, Tokyo Metropolitan Univ., Tokyo, 1998 (in Japanese)