Bethe equations “on the wrong side of the equator”
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 452-461 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The $T$$Q$ Baxter equations for the $XXX$ ($XXZ$) spin chain are analyzed. For each polynomial (trigonometric) solution of degree not exceeding $N/2$, which provides a solution of the Bethe ansatz equations, there exists a second linearly independent polynomial solution of degree greater than $N/2$. This second solution plays an essential role; in particular, all fusion relations follow from these two solutions.
@article{TMF_1999_118_3_a15,
     author = {G. P. Pron'ko and Yu. G. Stroganov},
     title = {Bethe equations {\textquotedblleft}on the wrong side of the equator{\textquotedblright}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {452--461},
     year = {1999},
     volume = {118},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a15/}
}
TY  - JOUR
AU  - G. P. Pron'ko
AU  - Yu. G. Stroganov
TI  - Bethe equations “on the wrong side of the equator”
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 452
EP  - 461
VL  - 118
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a15/
LA  - ru
ID  - TMF_1999_118_3_a15
ER  - 
%0 Journal Article
%A G. P. Pron'ko
%A Yu. G. Stroganov
%T Bethe equations “on the wrong side of the equator”
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 452-461
%V 118
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a15/
%G ru
%F TMF_1999_118_3_a15
G. P. Pron'ko; Yu. G. Stroganov. Bethe equations “on the wrong side of the equator”. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 452-461. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a15/

[1] H. Bethe, Z. Phys., 71 (1931), 205–226 | DOI | Zbl

[2] L. D. Faddeev, “How Algebraic Bethe Ansatz works for integrable model”, Les Houches Lectures, North Holland, Amsterdam, 1995, 1–59; E-print hep-th/9605187

[3] L. D. Faddeev, L. A. Takhtadzhyan, Zap. nauchn. semin. LOMI, 109, 1981, 134–178 | MR | Zbl

[4] R. J. Baxter, Stud. Appl. Math., 1971, 51–69 | DOI | MR

[5] R. J. Baxter, Ann. Phys. (N. Y.), 70 (1972), 193–228 | DOI | MR | Zbl

[6] R. J. Baxter, Ann. Phys. (N. Y.), 76 (1973), 1–24 ; 25–47 ; 48–71 | DOI | Zbl | Zbl | Zbl

[7] V. V. Bazhanov, S. L. Lukyanov, A. B. Zamolodchikov, Commun. Math. Phys., 177 (1996), 381–398 ; 190 (1997), 247–278 ; Integrable Structure of Conformal Field Theory. III: The Yang–Baxter Relation, E-print hep-th/9805008 | DOI | MR | Zbl | DOI | MR | Zbl

[8] A. Antonov, B. Feigin, Quantum Group Representations and Baxter Equation, E-print hep-th/9603105 | MR

[9] I. Krichiver, O. Lipan, P. Wiegmann, A. Zabrodin, Commun. Math. Phys., 188 (1997), 267–304 | DOI | MR

[10] A. N. Kirillov, N. Yu. Reshetikhin, J. Phys. A, 20 (1987), 1565–1585 | DOI | MR