Geometry and multidimensional soliton equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 441-451
Voir la notice de l'article provenant de la source Math-Net.Ru
The connection between the differential geometry of curves and $(2+1)$-dimensional integrable systems is established. The Zakharov equation, the modified Veselov–Novikov equation, the modified Korteweg–de Vries equation, etc., are equivalent in the Lakshmanan sense to $(2+1)$-dimensional spin systems.
@article{TMF_1999_118_3_a14,
author = {R. Myrzakulov and A. K. Danlybaeva and G. N. Nugmanova},
title = {Geometry and multidimensional soliton equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {441--451},
publisher = {mathdoc},
volume = {118},
number = {3},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/}
}
TY - JOUR AU - R. Myrzakulov AU - A. K. Danlybaeva AU - G. N. Nugmanova TI - Geometry and multidimensional soliton equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 441 EP - 451 VL - 118 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/ LA - ru ID - TMF_1999_118_3_a14 ER -
R. Myrzakulov; A. K. Danlybaeva; G. N. Nugmanova. Geometry and multidimensional soliton equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 441-451. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/