Geometry and multidimensional soliton equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 441-451 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The connection between the differential geometry of curves and $(2+1)$-dimensional integrable systems is established. The Zakharov equation, the modified Veselov–Novikov equation, the modified Korteweg–de Vries equation, etc., are equivalent in the Lakshmanan sense to $(2+1)$-dimensional spin systems.
@article{TMF_1999_118_3_a14,
     author = {R. Myrzakulov and A. K. Danlybaeva and G. N. Nugmanova},
     title = {Geometry and multidimensional soliton equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--451},
     year = {1999},
     volume = {118},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/}
}
TY  - JOUR
AU  - R. Myrzakulov
AU  - A. K. Danlybaeva
AU  - G. N. Nugmanova
TI  - Geometry and multidimensional soliton equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 441
EP  - 451
VL  - 118
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/
LA  - ru
ID  - TMF_1999_118_3_a14
ER  - 
%0 Journal Article
%A R. Myrzakulov
%A A. K. Danlybaeva
%A G. N. Nugmanova
%T Geometry and multidimensional soliton equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 441-451
%V 118
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/
%G ru
%F TMF_1999_118_3_a14
R. Myrzakulov; A. K. Danlybaeva; G. N. Nugmanova. Geometry and multidimensional soliton equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 441-451. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/

[1] A. Doliwa, P. M. Santini, Phys. Lett. A, 185 (1994), 373 | DOI | MR | Zbl

[2] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Phys. Rev. Lett., 19 (1967), 1095 | DOI | Zbl

[3] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[4] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear evolution equations and Inverse Scattering, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[5] H. Hasimoto, J. Fluid Mech., 51 (1972), 477 | DOI | MR | Zbl

[6] G. L. Lamb, J. Math. Phys., 18 (1977), 1654 | DOI | MR | Zbl

[7] M. Lakshmanan, Phys. Lett. A, 61 (1977), 53 ; J. Math. Phys., 20 (1979), 1667 | DOI | DOI | MR | Zbl

[8] R. Myrzakulov, On some integrable and nonintegrable soliton equations of magnets, HEPI, Alma-Ata, 1987

[9] V. E. Zakharov, L. A. Takhtadzhyan, TMF, 38 (1979), 26

[10] K. Nakayama, H. Segur, M. Wadati, Phys. Rev. Lett., 69 (1992), 2603 | DOI | MR | Zbl

[11] A. Sym, “Soliton surfaces and their applications”, Geometric Aspects of the Einstein Equations and Integrable Systems, Lect. Notes in Phys., 239, ed. R. Martini, Springer, New York, 1985, 154 | DOI | MR

[12] A. I. Bobenko, Math. Ann., 290 (1990), 207 | MR

[13] R. Balakrishnan, A. R. Bishop, R. Dandoloff, Phys. Rev. B, 47 (1993), 3108 | DOI

[14] B. G. Konopelchenko, Solitons in multidimensions, World Scientific, Singapore, 1993 | MR | Zbl

[15] B. G. Konopelchenko, Multidimensional integrable systems and dynamics of surfaces in space, Preprint, Acad. Sinica, Taipei, 1993

[16] I. A. Taimanov, Trans. Am. Math. Soc. Ser. 2, 179 (1997), 133 | MR | Zbl

[17] R. Myrzakulov, Soliton equations in $2+1$ dimensions and Differential geometry of curves/surfaces, Preprint CNLP-1994-02, CNLP, Alma-Ata, 1994

[18] R. Myrzakulov, Integrable geometry and soliton equations in $2+1$ dimensions, Preprint CNLP-1994-06, CNLP, Alma-Ata, 1994

[19] R. Myrzakulov, S. Vijayalarshmi, G. N. Nugmanova, M. Lakshmanan, Phys. Lett. A, 233 (1997), 391 | DOI | MR | Zbl

[20] R. Myrzakulov, S. Vijayalakshmi, R. N. Syzdykova, M. Lakshmanan, J. Math. Phys., 39 (1998), 2122 | DOI | MR | Zbl

[21] M. Lakshmanan, R. Myrzakulov, S. Vijayalakshmi, A. K. Danlybaeva, J. Math. Phys., 39 (1998), 3765 | DOI | MR | Zbl

[22] L. V. Bogdanov, TMF, 70 (1987), 309 | MR | Zbl

[23] G. N. Nugmanova, The Myrzakulov equations: the gauge equivalent counterparts and soliton solutions, KSU, Alma-Ata, 1992

[24] V. E. Zakharov, “Method inverse scattering problem”, Solitons, eds. R. K. Bullough, P. J. Caudrey, Springer, Berlin, 1980, 270 | MR

[25] I. A. B. Strachan, J. Math. Phys., 34 (1993), 243 | DOI | MR | Zbl

[26] O. I. Bogoyavlenskii, Oprokidyvayuschiesya solitony, Nauka, M., 1991 | MR

[27] R. Myrzakulov, G. N. Nugmanova, R. N. Syzdykova, J. Phys. A, 31:47 (1998), 9535 | DOI | MR | Zbl