Geometry and multidimensional soliton equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 441-451

Voir la notice de l'article provenant de la source Math-Net.Ru

The connection between the differential geometry of curves and $(2+1)$-dimensional integrable systems is established. The Zakharov equation, the modified Veselov–Novikov equation, the modified Korteweg–de Vries equation, etc., are equivalent in the Lakshmanan sense to $(2+1)$-dimensional spin systems.
@article{TMF_1999_118_3_a14,
     author = {R. Myrzakulov and A. K. Danlybaeva and G. N. Nugmanova},
     title = {Geometry and multidimensional soliton equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {441--451},
     publisher = {mathdoc},
     volume = {118},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/}
}
TY  - JOUR
AU  - R. Myrzakulov
AU  - A. K. Danlybaeva
AU  - G. N. Nugmanova
TI  - Geometry and multidimensional soliton equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 441
EP  - 451
VL  - 118
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/
LA  - ru
ID  - TMF_1999_118_3_a14
ER  - 
%0 Journal Article
%A R. Myrzakulov
%A A. K. Danlybaeva
%A G. N. Nugmanova
%T Geometry and multidimensional soliton equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 441-451
%V 118
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/
%G ru
%F TMF_1999_118_3_a14
R. Myrzakulov; A. K. Danlybaeva; G. N. Nugmanova. Geometry and multidimensional soliton equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 441-451. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a14/