Perturbation of a two-soliton solution of the Korteweg--de~Vries equation in the case of close amplitudes
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 434-440

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the interaction process for two solitons with close amplitudes under a small perturbation. The leading term of the formal asymptotic solution is found as the sum of two solitons with slowly varying parameters. The equations of slow variations are derived for the soliton phase shifts. The effects related to the interaction between the perturbed solitons can compensate the velocity difference in some conditions, which can result in the formation of the so-called quasi-stationary soliton pair.
@article{TMF_1999_118_3_a13,
     author = {V. A. Lazarev},
     title = {Perturbation of a two-soliton solution of the {Korteweg--de~Vries} equation in the case of close amplitudes},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {434--440},
     publisher = {mathdoc},
     volume = {118},
     number = {3},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a13/}
}
TY  - JOUR
AU  - V. A. Lazarev
TI  - Perturbation of a two-soliton solution of the Korteweg--de~Vries equation in the case of close amplitudes
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 434
EP  - 440
VL  - 118
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a13/
LA  - ru
ID  - TMF_1999_118_3_a13
ER  - 
%0 Journal Article
%A V. A. Lazarev
%T Perturbation of a two-soliton solution of the Korteweg--de~Vries equation in the case of close amplitudes
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 434-440
%V 118
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a13/
%G ru
%F TMF_1999_118_3_a13
V. A. Lazarev. Perturbation of a two-soliton solution of the Korteweg--de~Vries equation in the case of close amplitudes. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 434-440. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a13/