Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 413-422 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analogues of the Pearcey integral describe the small dispersion influence on the beginning of spontaneous-vanishing processes for the nonlinear geometric optic approximation amplitude, which is a solution of equations of the focusing nonlinear Schrödinger equation type. The asymptotic behavior as $x^2+t^2\to\infty$ of these analogues is considered. For $x^2+t^2\to\infty$, the special functions under consideration have a domain of small-amplitude high-frequency oscillations, which occur on the background of the nonzero-amplitude nonlinear geometric optic approximation.
@article{TMF_1999_118_3_a11,
     author = {V. R. Kudashev and B. I. Suleimanov},
     title = {Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {413--422},
     year = {1999},
     volume = {118},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a11/}
}
TY  - JOUR
AU  - V. R. Kudashev
AU  - B. I. Suleimanov
TI  - Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 413
EP  - 422
VL  - 118
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a11/
LA  - ru
ID  - TMF_1999_118_3_a11
ER  - 
%0 Journal Article
%A V. R. Kudashev
%A B. I. Suleimanov
%T Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 413-422
%V 118
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a11/
%G ru
%F TMF_1999_118_3_a11
V. R. Kudashev; B. I. Suleimanov. Small-amplitude dispersion oscillations on the background of the nonlinear geometric optic approximation. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 413-422. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a11/

[1] V. R. Kudashev, B. I. Suleimanov, Pisma v ZhETF, 62:4 (1998), 358

[2] R. Haberman, R. Sun, Stud. Appl. Math., LXXII:1 (1985), 39 | MR

[3] B. I. Suleimanov, Zap. nauchn. semin. LOMI, 187, 1991, 110

[4] A. A. Kapaev, TMF, 77:3 (1988), 323 | MR | Zbl

[5] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[6] A. B. Shvartsburg, Geometricheskaya optika v nelineinoi teorii voln, Nauka, M., 1976

[7] A. V. Gurevich, A. B. Shvartsburg, ZhETF, 58:6 (1970), 2012

[8] S. K. Zhdanov, B. A. Trubnikov, Kvazigazovye neustoichivye sredy, Nauka, M., 1991 | Zbl

[9] K. A. Naugolnykh, L. A. Ostrovskii, Nelineinye volnovye protsessy v akustike, Nauka, M., 1990 | MR | Zbl

[10] V. I. Arnold, Teoriya katastrof, Nauka, M., 1990 | MR

[11] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[12] A. R. Its, A. A. Kapaev, Izv. AN SSSR. Ser. matem., 51:4 (1987), 878 | Zbl

[13] A. R. Its, Izv. AN SSSR. Ser. matem., 49:3 (1985), 530 | MR | Zbl

[14] V. E. Zakharov, A. B. Shabat, ZhETF, 61:1 (1972), 118

[15] V. Vazov, Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[16] A. N. Belogrudov, Diff. uravneniya, 33:5 (1997), 587 | MR | Zbl

[17] A. V. Kitaev, J. Math. Phys., 35:6 (1994), 2934 | DOI | MR | Zbl

[18] A. V. Kitaev, Zap. nauchn. semin. LOMI, 169, 1988, 84 | Zbl

[19] A. A. Kapaev, Transtsendenty Penleve kak nelineinye spetsialnye funktsii, Diss. na soiskanie uch. st. dokt. fiz.-mat. nauk, Sankt-Peterburgskoe otdelenie Matematicheskogo instituta im. V. A. Steklova RAN, Sankt-Peterburg, 1998