Fundamental mathematical structures of integrable models
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 405-412
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider integrable models in a totally discrete multidimensional space–time. Dynamic variables are associated with cells into which the space is decomposed by a set of intersecting hyperplanes. We investigate the $(2+1)$-dimensional model related to the functional tetrahedron equation. We propose a method for constructing solutions of analogous models in higher dimensions.
@article{TMF_1999_118_3_a10,
author = {I. G. Korepanov},
title = {Fundamental mathematical structures of integrable models},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {405--412},
publisher = {mathdoc},
volume = {118},
number = {3},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a10/}
}
I. G. Korepanov. Fundamental mathematical structures of integrable models. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 3, pp. 405-412. http://geodesic.mathdoc.fr/item/TMF_1999_118_3_a10/