Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 248-263 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces. Using the group isometries, we obtain systems of ordinary differential equations for the energy levels. We prove that the Hamiltonian is self-adjoint for several interaction potentials. For the sphere, a number of energy series are evaluated for bodies with equal masses.
@article{TMF_1999_118_2_a5,
     author = {A. V. Shchepetilov},
     title = {Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {248--263},
     year = {1999},
     volume = {118},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/}
}
TY  - JOUR
AU  - A. V. Shchepetilov
TI  - Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 248
EP  - 263
VL  - 118
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/
LA  - ru
ID  - TMF_1999_118_2_a5
ER  - 
%0 Journal Article
%A A. V. Shchepetilov
%T Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 248-263
%V 118
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/
%G ru
%F TMF_1999_118_2_a5
A. V. Shchepetilov. Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 248-263. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/

[1] Dzh. Volf, Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR

[2] E. Shredinger, Izbrannye trudy po kvantovoi mekhanike, Nauka, M., 1976

[3] L. Infeld, Phys. Rev., 59 (1941), 737 | DOI | MR | Zbl

[4] P. W. Higgs, J. Phys. A Math. Gen., 12 (1979), 309 | DOI | MR | Zbl

[5] H. I. Leemon, J. Phys. A Math. Gen., 12 (1979), 489 | DOI | MR | Zbl

[6] J. J. Slawianowski, Bull. Acad. pol. sci. Sér. sci. phys. et astron., 28:2 (1980), 83 | MR | Zbl

[7] J. J. Slawianowski, J. Slominski, Bull. Acad. pol. sci. Sér. sci. phys. et astron., 28:2 (1980), 99 | MR | Zbl

[8] V. V. Kozlov, A. O. Harin, Celest. Mech. and Dynam. Astron., 54 (1992), 393 | DOI | MR | Zbl

[9] V. V. Kozlov, Vestn. MGU. Ser. 1. Matem. mekhan., 1994, no. 2, 28

[10] A. O. Barut, A. Inomata, G. Junker, J. Phys. A Math. Gen., 20 (1987), 6271 ; 23 (1990), 1179 | DOI | MR | Zbl | DOI | MR | Zbl

[11] A. V. Schepetilov, TMF, 109 (1996), 395 | DOI | Zbl

[12] A. V. Shchepetilov, J. Phys. A Math. Gen., 31 (1998), 6279 | DOI | MR | Zbl

[13] M. J. Gotay, J. Math. Phys., 27:8 (1986), 2051 | DOI | MR | Zbl

[14] G. M. Tuynmann, J. Math. Phys., 31 (1989), 83 | DOI | MR

[15] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[16] V. N. Govorukhin, V. G. Tsibulin, Vvedenie v Maple. Matematicheskii paket dlya vsekh, Mir, M., 1997

[17] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M., 1950 | MR

[18] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR

[19] L. D. Landau, E. M. Lifshits, Kvantovaya mekhanika. Nerelyativistskaya teoriya, Nauka, M., 1989 | MR

[20] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR