Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 248-263
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces. Using the group isometries, we obtain systems of ordinary differential equations for the energy levels. We prove that the Hamiltonian is self-adjoint for several interaction potentials. For the sphere, a number of energy series are evaluated for bodies with equal masses.
@article{TMF_1999_118_2_a5,
author = {A. V. Shchepetilov},
title = {Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {248--263},
publisher = {mathdoc},
volume = {118},
number = {2},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/}
}
TY - JOUR AU - A. V. Shchepetilov TI - Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces JO - Teoretičeskaâ i matematičeskaâ fizika PY - 1999 SP - 248 EP - 263 VL - 118 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/ LA - ru ID - TMF_1999_118_2_a5 ER -
%0 Journal Article %A A. V. Shchepetilov %T Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces %J Teoretičeskaâ i matematičeskaâ fizika %D 1999 %P 248-263 %V 118 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/ %G ru %F TMF_1999_118_2_a5
A. V. Shchepetilov. Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 248-263. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/