Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 248-263

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces. Using the group isometries, we obtain systems of ordinary differential equations for the energy levels. We prove that the Hamiltonian is self-adjoint for several interaction potentials. For the sphere, a number of energy series are evaluated for bodies with equal masses.
@article{TMF_1999_118_2_a5,
     author = {A. V. Shchepetilov},
     title = {Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {248--263},
     publisher = {mathdoc},
     volume = {118},
     number = {2},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/}
}
TY  - JOUR
AU  - A. V. Shchepetilov
TI  - Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 248
EP  - 263
VL  - 118
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/
LA  - ru
ID  - TMF_1999_118_2_a5
ER  - 
%0 Journal Article
%A A. V. Shchepetilov
%T Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 248-263
%V 118
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/
%G ru
%F TMF_1999_118_2_a5
A. V. Shchepetilov. Quantum mechanical two-body problem with central interaction on simply connected constant-curvature surfaces. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 248-263. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a5/