A relativistic particle in the Liouville field
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 229-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate a model for a relativistic particle in the Liouville field. The model is $SL(2,R)/Z_2$ invariant. The corresponding dynamic integrals describe the whole set of classical trajectories. These integrals are used for the gauge-invariant Hamiltonian reduction. We propose a new scheme for quantizing the reduced system. The quantum system obtained reproduces the classical symmetry. We discuss the physical aspects of the model.
@article{TMF_1999_118_2_a4,
     author = {G. P. Jorjadze and W. Piechocki},
     title = {A relativistic particle in the {Liouville} field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {229--247},
     year = {1999},
     volume = {118},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a4/}
}
TY  - JOUR
AU  - G. P. Jorjadze
AU  - W. Piechocki
TI  - A relativistic particle in the Liouville field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 229
EP  - 247
VL  - 118
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a4/
LA  - ru
ID  - TMF_1999_118_2_a4
ER  - 
%0 Journal Article
%A G. P. Jorjadze
%A W. Piechocki
%T A relativistic particle in the Liouville field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 229-247
%V 118
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a4/
%G ru
%F TMF_1999_118_2_a4
G. P. Jorjadze; W. Piechocki. A relativistic particle in the Liouville field. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 229-247. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a4/

[1] B. A. Dubrovin, S. P. Novikov, A. K. Fomenko, Sovremennaya geometriya, Nauka, M., 1979 | MR

[2] R. Jackiw, “Liouville field theory: a two-dimensional model for gravity”, Quantum Theory of Gravity, ed. S. M. Christensen, Adam Hilger, Ltd., Bristol, 1984, 403 | MR

[3] N. Seiberg, “Notes on quantum Liouville theory and quantum gravity”, Rundom Surfaces and Quantum Gravity, eds. O. Alvarez et al., Plenum Press, New York–London, 1991, 363 | DOI | MR

[4] E. Witten, Phys. Rev. Lett., 38 (1977), 121 | DOI

[5] A. M. Polyakov, Phys. Lett. B, 103 (1981), 207 | DOI | MR

[6] J. L. Gervais, A. Neveu, Nucl. Phys. B, 238 (1984), 125 | DOI | MR

[7] R. Jackiw, “Geometry and symmetry breaking in the Liouville theory”, Progress in Quantum Field Theory, eds. H. Ezawa, S. Kamefuchi, North-Holland, Elsevier Science Publishers B. V., Amsterdam–Oxford–New York–Tokyo, 1986, 83 | MR

[8] J. Liouville, J. Math. Pures Appl., 18 (1853), 71

[9] L. Bianchi, Ann. Scuola Norm. Superiore Pisa. Ser. 1, 2 (1879), 26

[10] P. A. M. Dirak, Lektsii po kvantovoi mekhanike, Mir, M., 1968

[11] L. D. Faddeev, TMF, 1 (1969), 3 | MR | Zbl

[12] M. Henneaux, C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, 1992 | MR | Zbl

[13] L. Faddeev, R. Jackiw, Phys. Rev. Lett., 60 (1988), 1692 | DOI | MR | Zbl

[14] G. Chechelashvili, G. P. Dzhordzhadze, N. Kiknadze, TMF, 109 (1996), 90 | DOI | MR | Zbl

[15] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977 | MR

[16] N. M. J. Woodhouse, Geometric Quantization, Clarendon, Oxford, 1992 | MR | Zbl

[17] G. P. Dzhordzhadze, I. T. Sarishvili, TMF, 93 (1992), 231 | MR

[18] D. P. Zhelobenko, A. I. Shtern, Predstavleniya grupp Li, Nauka, M., 1983 | MR

[19] M. Plyushchay, J. Math. Phys., 34 (1993), 3954 | DOI | MR | Zbl

[20] A. K. Pogrebkov, DAN SSSR, 244 (1979), 873 | MR | Zbl

[21] K. Bra̧giel, W. Piechocki, Topology of the Set of Smooth Solutions to the Liouville Equation, submitted for publication | MR | Zbl

[22] G. P. Dzhordzhadze, A. K. Pogrebkov, M. K. Polivanov, TMF, 40 (1979), 221 | MR | Zbl