Integrable lattices
Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 217-228 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a method for constructing integrable lattices starting from dynamic systems with two different parameterizations of the canonical variables and hence two independent Bäcklund flows. We construct integrable lattices corresponding to generalizations of the nonlinear Schrödinger equation. We discuss the Toda, Volterra, and Heisenberg models in detail. For these systems, as well as for the Landau–Lifshitz model, we obtain totally discrete Lagrangians. We also discuss the relation of these systems to the Hirota equations.
@article{TMF_1999_118_2_a3,
     author = {V. G. Marikhin and A. B. Shabat},
     title = {Integrable lattices},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {217--228},
     year = {1999},
     volume = {118},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a3/}
}
TY  - JOUR
AU  - V. G. Marikhin
AU  - A. B. Shabat
TI  - Integrable lattices
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 1999
SP  - 217
EP  - 228
VL  - 118
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a3/
LA  - ru
ID  - TMF_1999_118_2_a3
ER  - 
%0 Journal Article
%A V. G. Marikhin
%A A. B. Shabat
%T Integrable lattices
%J Teoretičeskaâ i matematičeskaâ fizika
%D 1999
%P 217-228
%V 118
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a3/
%G ru
%F TMF_1999_118_2_a3
V. G. Marikhin; A. B. Shabat. Integrable lattices. Teoretičeskaâ i matematičeskaâ fizika, Tome 118 (1999) no. 2, pp. 217-228. http://geodesic.mathdoc.fr/item/TMF_1999_118_2_a3/

[1] R. Hirota, J. Phys. Soc. Japan, 43 (1977), 2074 ; 50 (1981), 3785 | DOI | MR | Zbl | DOI | MR

[2] V. E. Adler, A. B. Shabat, TMF, 112 (1997), 179 | DOI | Zbl

[3] V. G. Marikhin, Pisma v ZhETF, 66 (1997), 673

[4] R. M. Miura, J. Math. Phys., 9 (1968), 1202 | DOI | MR | Zbl

[5] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, UMN, 42 (1993), 3

[6] Y. B. Suris, J. Phys. A, 30 (1997), 2235 | DOI | MR | Zbl

[7] F. W. Nijhoff, O. Ragnisco, V. B. Kuznetsov, Commun. Math. Phys., 176 (1996), 681 | DOI | MR | Zbl

[8] R. I. Yamilov, “Classification of Toda type scalar lattices”, Nonlinear Evolution Equations and Dynamical Systems, World Scientific Publ. Co., Singapore, 1993, 423

[9] V. E. Adler, R. I. Yamilov, Chastnoe soobschenie

[10] F. W. Nijhoff, V. Papageorgiou, Phys. Lett. A, 141 (1989), 269 | DOI | MR

[11] V. E. Adler, A. B. Shabat, TMF, 115 (1998), 349 | DOI | Zbl

[12] I. Krichever, O. Lipan, P. Wiegmann, A. Zabrodin, Quantum integrable systems and elliptic solutions of classical discrete nonlinear equations, , 1996 E-print hep-th/9604080 | MR